Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A novel fucose recognition fold involved in innate immunity

Abstract

Anguilla anguilla agglutinin (AAA), a fucolectin found in the serum of European eel, participates in the recognition of bacterial liposaccharides by the animal innate immunity system. Because AAA specifically recognizes fucosylated terminals of H and Lewis (a) blood groups, it has been used extensively as a reagent in blood typing and histochemistry. AAA contains a newly discovered carbohydrate recognition domain present in proteins of organisms ranging from bacteria to vertebrates. The crystal structure of the complex of AAA with a-L-fucose characterizes the novel fold of this entire lectin family, identifying the residues that provide the structural determinants of oligosaccharide specificity. Modification of these residues explains how the different isoforms in serum can provide a diverse pathogen-specific recognition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structure of the AAA in complex with α-L-fucose.
Figure 2: Fucose bound to the AAA-binding site.
Figure 3: Schematic representation of protein interactions with ligands.
Figure 4: Model of the interactions between AAA and a terminal fucosyl trisaccharide.
Figure 5: Structure-based sequence alignment of AAA with three proteins that share the AAA fold.
Figure 6: Sequence alignments of AAA with proteins of similar sequence.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Hoffmann, J.A., Kafatos, F.C., Janeway, C.A. & Ezekowitz, R.A. Phylogenetic perspectives in innate immunity. Science 284, 1313–1318 (1999).

    Article  CAS  Google Scholar 

  2. Vasta, G.R., Quesenberry, M., Ahmed, H. & O'Leary, N. C-type lectins and galectins mediate innate and adaptive immune functions: their roles in the complement activation pathway. Dev. Comp. Immunol. 23, 401–420 (1999).

    Article  CAS  Google Scholar 

  3. Saito, T., Hatada, M., Iwanaga, S. & Kawabata, S. A newly identified horseshoe crab lectin with binding specificity to O-antigen of bacterial lipopolysaccharides. J. Biol. Chem. 272, 30703–30708 (1997).

    Article  CAS  Google Scholar 

  4. Honda, S., Kashiwagi, M., Miyamoto, K., Takei, Y. & Hirose, S. Multiplicity, structures, and endocrine and exocrine natures of eel fucose-binding lectins. J. Biol. Chem. 275, 33151–33157 (2000).

    Article  CAS  Google Scholar 

  5. Springer, G.F. & Desai, P.R. Monosaccharides as specific precipitinogens of eel anti-human blood-group H(O) antibody. Biochemistry 10, 3749–3761 (1971).

    Article  CAS  Google Scholar 

  6. Baldus, S.E. et al. Characterization of the binding specificity of Anguilla anguilla agglutinin (AAA) in comparison to Ulex europaeus agglutinin I (UEA-I). Glycoconj. J. 13, 585–590 (1996).

    Article  CAS  Google Scholar 

  7. Morgan, W.T. & Watkins, W.M. Unravelling the biochemical basis of blood group ABO and Lewis antigenic specificity. Glycoconj. J. 17, 501–530 (2000).

    Article  CAS  Google Scholar 

  8. Macedo-Ribeiro, S. et al. Crystal structures of the membrane-binding C2 domain of human coagulation factor V. Nature 402, 434–439 (1999).

    Article  CAS  Google Scholar 

  9. Ito, N. et al. Novel thioether bond revealed by a 1.7 Å crystal structure of galactose oxidase. Nature 350, 87–90 (1991).

    Article  CAS  Google Scholar 

  10. Gaskell, A., Crennell, S. & Taylor, G. The three domains of a bacterial sialidase: a β-propeller, an immunoglobulin module and a galactose-binding jelly-roll. Structure 3, 1197–1205 (1995).

    Article  CAS  Google Scholar 

  11. Wendt, K.S. et al. Crystal structure of the APC10/DOC1 subunit of the human anaphase-promoting complex. Nature Struct. Biol. 8, 784–788 (2001).

    Article  CAS  Google Scholar 

  12. Marintchev, A. et al. Solution structure of the single-strand break repair protein XRCC1 N-terminal domain. Nature Struct. Biol. 6, 884–893 (1999).

    Article  CAS  Google Scholar 

  13. Kairies, N. et al. The 2.0 Å crystal structure of tachylectin 5A provides evidence for the common origin of the innate immunity and the blood coagulation systems. Proc. Natl. Acad. Sci. USA 98, 13519–13524 (2001).

    Article  CAS  Google Scholar 

  14. Rudd, P.M., Elliott, T., Cresswell, P., Wilson, I.A. & Dwek, R.A. Glycosylation and the immune system. Science 291, 2370–2376 (2001).

    Article  CAS  Google Scholar 

  15. Bezkorovainy, A., Springer, G.F. & Desai, P.R. Physicochemical properties of the eel anti-human blood-group H(O) antibody. Biochemistry 10, 3761–3764 (1971).

    Article  CAS  Google Scholar 

  16. Kelly, C. Physicochemical properties and N-terminal sequence of eel lectin. Biochem. J. 220, 221–226 (1984).

    Article  CAS  Google Scholar 

  17. Pierschbacher, M.D., Hayman, E.G. & Ruoslahti, E. The cell attachment determinant in fibronectin. J. Cell. Biochem. 28, 115–126 (1985).

    Article  CAS  Google Scholar 

  18. Springer, G.F. & Desai, P.R. The immunochemical requirement for specific activity and the physiological properties of eel anti-human blood-group H(O) 7 S Globulin. Vox Sang. 18, 551–554 (1970).

    Article  CAS  Google Scholar 

  19. Imberty, A. Oligosaccharide structures: theory versus experiment. Curr. Opin. Struct. Biol. 7, 617–623 (1997).

    Article  CAS  Google Scholar 

  20. Imberty, A. et al. Computer simulation of histo-blood group oligosaccharides: energy maps of all constituting disaccharides and potential energy surfaces of 14 ABH and Lewis carbohydrate antigens. Glycoconj. J. 12, 331–349 (1995).

    Article  CAS  Google Scholar 

  21. Bush, C.A., Martin-Pastor, M. & Imberty, A. Structure and conformation of complex carbohydrates of glycoproteins, glycolipids, and bacterial polysaccharides. Annu. Rev. Biophys. Biomol. Struct. 28, 269–293 (1999).

    Article  CAS  Google Scholar 

  22. Perez, S. et al. Crystal and molecular structure of a histo-blood group antigen involved in cell adhesion: the Lewis x trisaccharide. Glycobiology 6, 537–542 (1996).

    Article  CAS  Google Scholar 

  23. Rini, J.M. & Lobsanov, Y.D. New animal lectin structures. Curr. Opin. Struct. Biol. 9, 578–584 (1999).

    Article  CAS  Google Scholar 

  24. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  25. Tettelin, H. et al. Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293, 498–506 (2001).

    Article  CAS  Google Scholar 

  26. Adams, M.D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 (2000).

    Article  Google Scholar 

  27. Seery, L.T., Schoenberg, D.R., Barbaux, S., Sharp, P.M. & Whitehead, A.S. Identification of a novel member of the pentraxin family in Xenopus laevis. Proc. R. Soc. Lond. B Biol. Sci. 253, 263–270 (1993).

    Article  CAS  Google Scholar 

  28. Meindl, A. et al. A gene (SRPX) encoding a sushi-repeat-containing protein is deleted in patients with X-linked retinitis pigmentosa. Hum. Mol. Genet. 4, 2339–2346. (1995).

    Article  CAS  Google Scholar 

  29. Horejsi, V. & Kocourek, J. Studies on lectins. XXXVI. Properties of some lectins prepared by affinity chromatography on O-glycosyl polyacrylamide gels. Biochim. Biophys. Acta 538, 299–315 (1978).

    Article  CAS  Google Scholar 

  30. Dodd, R.B. & Drickamer, K. Lectin-like proteins in model organisms: implications for evolution of carbohydrate-binding activity. Glycobiology 11, 71R–79R (2001).

    Article  CAS  Google Scholar 

  31. Zhang, H. et al. Crystal structure of YbaK protein from Haemophilus influenzae (HI1434) at 1.8 Å resolution: functional implications. Proteins 40, 86–97 (2000).

    Article  CAS  Google Scholar 

  32. Saukkonen, K., Burnette, W.N., Mar, V.L., Masure, H.R. & Tuomanen, E.I. Pertussis toxin has eukaryotic-like carbohydrate recognition domains. Proc. Natl. Acad. Sci. USA 89, 118–122 (1992).

    Article  CAS  Google Scholar 

  33. Baumgartner, S., Hofmann, K., Chiquet-Ehrismann, R. & Bucher, P. The discoidin domain family revisited: new members from prokaryotes and a homology-based fold prediction. Protein Sci. 7, 1626–1631 (1998).

    Article  CAS  Google Scholar 

  34. Vogel, W. Discoidin domain receptors: structural relations and functional implications. FASEB J. 13, S77–S82 (1999).

    Article  CAS  Google Scholar 

  35. Poole, S., Firtel, R.A., Lamar, E. & Rowekamp, W. Sequence and expression of the discoidin I gene family in Dictyostelium discoideum. J. Mol. Biol. 153, 273–289 (1981).

    Article  CAS  Google Scholar 

  36. Weis, W.I., Drickamer, K. & Hendrickson, W.A. Structure of a C-type mannose-binding protein complexed with an oligosaccharide. Nature 360, 127–134 (1992).

    Article  CAS  Google Scholar 

  37. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  38. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  39. Brünger, A. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  40. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–402 (1997).

    Article  CAS  Google Scholar 

  41. Esnouf, R.M. Further additions to MolScript version 1.4, including reading and contouring of electron density maps. Acta Crystallogr. D 55, 938–940 (1999).

    Article  CAS  Google Scholar 

  42. Merrit, E.A. & Bacon, D.J. RASTER3D Methods Enzymol. 277, 505–524 (1997).

    Article  Google Scholar 

  43. Nicholls, A., Sharp, K. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Func. Genet. 11, 281–286 (1991).

    Article  CAS  Google Scholar 

  44. Gouet, P., Courcelle, E., Stuart, D.I. & Metoz, F. ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15, 305–308 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Leahy and G. Hart for critical reviewing of the manuscript. This research is supported by a grant from National Institute of General Medical Sciences to L.M.A. and a grant from the National Science Foundation to G.R.V.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mario A. Bianchet or L. Mario Amzel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bianchet, M., Odom, E., Vasta, G. et al. A novel fucose recognition fold involved in innate immunity. Nat Struct Mol Biol 9, 628–634 (2002). https://doi.org/10.1038/nsb817

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb817

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing