Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nanoseconds molecular dynamics simulation of primary mechanical energy transfer steps in F1-ATP synthase

Abstract

The mitochondrial membrane protein FoF1-ATP synthase synthesizes adenosine triphosphate (ATP), the universal currency of energy in the cell. This process involves mechanochemical energy transfer from a rotating asymmetric γ-'stalk' to the three active sites of the F1 unit, which drives the bound ATP out of the binding pocket. Here, the primary structural changes associated with this energy transfer in F1-ATP synthase were studied with multi-nanosecond molecular dynamics simulations. By forced rotation of the γ-stalk that mimics the effect of proton motive Fo-rotation during ATP synthesis, a time-resolved atomic model for the structural changes in the F1 part in terms of propagating conformational motions is obtained. For these, different time scales are found, which allows the separation of nanosecond from microsecond conformational motions. In the simulations, rotation of the γ-stalk lowers the ATP affinity of the βTP binding pocket and triggers fast, spontaneous closure of the empty βE subunit. The simulations explain several mutation studies and the reduced hydrolysis rate of γ-depleted F1-ATPase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ATP synthase structure, function and simulation setup.
Figure 2: Structural changes of the β-subunits induced by enforced rotation of the γ-stalk.
Figure 3: Changes at the catalytic α–β interface.
Figure 4: Sequence and timing of conformational changes in βTP.
Figure 5: Changes at the βTP ATP binding site after the 120° rotation and free dynamics.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Mitchell, P. Nature 191, 144–148 (1961).

    Article  CAS  Google Scholar 

  2. Boyer, P.D. Biochim. Biophys. Acta 1140, 215–250 (1993).

    Article  CAS  Google Scholar 

  3. Duncan, T.M., Bulygin, V.V., Zhou, Y., Hutcheon, M.L. & Cross, R.L. Proc. Natl. Acad. Sci. USA 92, 10964–10968 (1995).

    Article  CAS  Google Scholar 

  4. Sabbert, D., Engelbrecht, S. & Junge, W. Nature 381, 623–625 (1996).

    Article  CAS  Google Scholar 

  5. Noji, H., Yasuda, R., Yoshida, M. & Kinosita, K. Nature 386, 299–302 (1997).

    Article  CAS  Google Scholar 

  6. Abrahams, J.P., Leslie, A.G.W., Lutter, L. & Walker, J.E. Nature 370, 621–628 (1994).

    Article  CAS  Google Scholar 

  7. Gibbons, C., Montgomery, M.G., Leslie, A.G.W. & Walker, J.E. Nature Struct. Biol. 7, 1055–1061 (2000).

    Article  CAS  Google Scholar 

  8. Weber, J. & Senior, A.E. Biochim. Biophys. Acta 1319, 19–58 (1997).

    Article  CAS  Google Scholar 

  9. Pänke, O. & Rumberg, B. Biochim. Biophys. Acta 1322, 183–194 (1997).

    Article  Google Scholar 

  10. Ren, G. & Allison, W.S. Biochim. Biophys. Acta 1458, 221–233 (2000).

    Article  CAS  Google Scholar 

  11. Hara, K.Y. et al. J. Biol. Chem. 275, 14260–14263 (2000).

    Article  CAS  Google Scholar 

  12. Boyer, P.D. Annu. Rev. Biochem. 66, 717–749 (1997).

    Article  CAS  Google Scholar 

  13. Engelbrecht, S. & Junge, W. FEBS Lett. 414, 485–491 (1997).

    Article  CAS  Google Scholar 

  14. Cherepanov, D.A., Mulkidjanian, A.Y. & Junge, W. FEBS Lett. 449, 1–6 (1999).

    Article  CAS  Google Scholar 

  15. Weber, J., Nadanaciva, S. & Senior, A.E. FEBS Lett. 483, 1–5 (2000).

    Article  CAS  Google Scholar 

  16. Oster, G. & Wang, H.Y. Biochim. Biophys. Acta 1458, 482–510 (2000).

    Article  CAS  Google Scholar 

  17. Grubmüller, H., Heymann, B. & Tavan, P. Science 271, 997–999 (1996).

    Article  Google Scholar 

  18. Izrailev, S., Stepaniants, S., Balsera, M., Oono, Y. & Schulten, K. Biophys. J. 72, 1568–1581 (1997).

    Article  CAS  Google Scholar 

  19. Dunn, S.D. & Futai, M. J. Biol. Chem. 255, 113–118 (1980).

    CAS  PubMed  Google Scholar 

  20. Miwa, K. & Yoshida, M. Proc. Natl. Acad. Sci. USA 86, 6484–6487 (1989).

    Article  CAS  Google Scholar 

  21. Yasuda, R., Noji, H., Yoshida, M., Kinosita, K. & Itoh, H. Nature 410, 898–904 (2001).

    Article  CAS  Google Scholar 

  22. Pänke, O., Cherepanov, D.A., Gumbiowski, K., Engelbrecht, S. & Junge, W. Biophys. J. 81, 1220–1233 (2001).

    Article  Google Scholar 

  23. Weber, J., Hammond, S.T., Wilke-Mounts, S. & Senior, A.E. Biochemistry 37, 608–614 (1998).

    Article  CAS  Google Scholar 

  24. Menz, R.I., Walker, J.E. & Leslie, A.G.W. Cell 106, 331 (2001).

    Article  CAS  Google Scholar 

  25. Heymann, B. & Grubmüller, H. Chem. Phys. Lett. 303, 1–9 (1999).

    Article  CAS  Google Scholar 

  26. Nadanaciva, S., Weber, J., Wilke-Mounts, S. & Senior, A.E. Biochemistry 38, 15493–15499 (1999).

    Article  CAS  Google Scholar 

  27. Le, N.P. et al. Biochemistry 39, 2778–2783 (2000).

    Article  CAS  Google Scholar 

  28. Nadanaciva, S., Weber, J. & Senior, A.E. Biochemistry 38, 7670–7677 (1999).

    Article  CAS  Google Scholar 

  29. Eichinger, M., Heller, H. & Grubmüller, H. In Workshop on molecular dynamics on parallel computers. (eds Esser, R. et al.) 154–174 (World Scientific, Singapore; 2000).

    Book  Google Scholar 

  30. Brooks, B.R. et al. J. Comp. Chem. 4, 187–217 (1983).

    Article  CAS  Google Scholar 

  31. Eichinger, M., Grubmüller, H., Heller, H. & Tavan, P. J. Comp. Chem. 18, 1729–1749 (1997).

    Article  CAS  Google Scholar 

  32. Jorgensen, W.L., Chandrasekhar, J. & Madura, J.D. J. Chem. Phys. 79, 926–935 (1983).

    Article  CAS  Google Scholar 

  33. Koradi, R., Billeter, M., & Wüthrich, K. J. Mol. Graphics 14, 51–55 (1996).

    Article  CAS  Google Scholar 

  34. Sayle, R.A. & Milnerwhite, E.J. Trends Biochem. Sci. 20 374–376 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Junge, A. Engel, B. de Groot, B. Heymann, K. Schulten, W. Allison, D. Chandler, V. Helms, M. Hofmann, K. Kinosita, V. Knecht, R. Lang, G. Oster, G. Schröder and H. Wang for stimulating discussions and for critical reading of the manuscript; B. de Groot for help with the GROMACS program package; and G. Schneider and O. Haan for their support. Computer time was provided by the Göttingen computer center (GWDG) and the Paderborn center for parallel computing (PC2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Grubmüller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böckmann, R., Grubmüller, H. Nanoseconds molecular dynamics simulation of primary mechanical energy transfer steps in F1-ATP synthase. Nat Struct Mol Biol 9, 198–202 (2002). https://doi.org/10.1038/nsb760

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb760

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing