Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A novel mechanism of tumorigenesis involving pH-dependent destabilization of a mutant p53 tetramer

Abstract

The p53 tumor suppressor requires tetramerization to function as an initiator of cell cycle arrest and/or apoptosis. Children in southern Brazil that exhibit an elevated incidence of adrenocortical carcinoma (ACC) harbor an Arg 337 to His mutation within the tetramerization domain of p53 (p53-R337H; 35 of 36 patients). The mutant tetramerization domain (p53tet-R337H) adopts a native-like fold but is less stable than the wild type domain (p53tet-wt). Furthermore, the stability of p53tet-R337H is highly sensitive to pH in the physiological range; this sensitivity correlates with the protonation state of the mutated His 337. These results demonstrate a pH-sensitive molecular defect of p53 (R337H), suggesting that pH-dependent p53 dysfunction is the molecular basis for these cases of ACC in Brazilian children.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The p53 tetramerization domain.
Figure 2: p53tet-wt and p53tet-R337H adopt similar protein folds.
Figure 3: p53tet-R337H is destabilized in a pH-dependent manner.
Figure 4: Deprotonation of His 337 destabilizes p53tet-R337H.

Similar content being viewed by others

References

  1. Prives, C. & Hall, P.A. J. Pathol. 187, 112–126 (1999).

    Article  CAS  Google Scholar 

  2. Levine, A.J. Cell 88, 323–331 (1997).

    Article  CAS  Google Scholar 

  3. Hollstein, M., Sidransky, D., Vogelstein, B. & Harris, C.C. Science 253, 49–53 (1991).

    Article  CAS  Google Scholar 

  4. Pavletich, N.P., Chambers, K.A. & Pabo, C.O. Genes Dev. 7, 2556–2564 (1993).

    Article  CAS  Google Scholar 

  5. Stürzbecher, H.W. et al. Oncogene 7, 1513–1523 (1992).

    PubMed  Google Scholar 

  6. Varley, J.M. et al. Oncogene 12, 2437–2442 (1996).

    CAS  PubMed  Google Scholar 

  7. Lomax, M.E. et al. Oncogene 14, 1869–1874 (1997).

    Article  CAS  Google Scholar 

  8. Davison, T.S., Yin, P., Nie, E., Kay, C. & Arrowsmith, C.H. Oncogene 17, 651–656 (1998).

    Article  CAS  Google Scholar 

  9. Ribeiro, R.C. et al. Proc. Natl. Acad. Sci. USA 98, 9330–9335 (2001).

    Article  CAS  Google Scholar 

  10. Lee, W. et al. Nature Struct. Biol. 1, 877–890 (1994).

    Article  CAS  Google Scholar 

  11. Clore, G.M. et al. Nature Struct. Biol. 2, 321–333 (1995).

    Article  CAS  Google Scholar 

  12. Jeffrey, P.D., Gorina, S. & Pavletich, N.P. Science 267, 1498–1502 (1995).

    Article  CAS  Google Scholar 

  13. Mateu, M.G. & Fersht, A.R. EMBO J. 17, 2748–2758 (1998).

    Article  CAS  Google Scholar 

  14. Lomax, M.E., Barnes, D.M., Hupp, T.R., Picksley, S.M. & Camplejohn, R.S. Oncogene 17, 643–649 (1998).

    Article  CAS  Google Scholar 

  15. Pervushin, K., Riek, R., Wider, G. & Wuthrich, K. Proc. Natl. Acad. Sci. USA 94, 12366–12371 (1997).

    Article  CAS  Google Scholar 

  16. Mathews, C.K. & van Holde, K.E. Biochemistry (Benjanim Cummings Publishing Co., New York; 1996).

    Google Scholar 

  17. Creighton, T.E. Proteins: structures and molecular properties (Freeman & Co., New York; 1993).

    Google Scholar 

  18. Cavanagh, J., Fairbrother, W.J., Palmer, A.G. III & Skelton, N.J. Protein NMR spectroscopy (Academic Press, New York; 1996).

    Google Scholar 

  19. Chao C., Saito S., Anderson C.W., Appella, E. & Xu, Y. Proc. Natl. Acad. Sci. USA 97, 11936–11941 (2000).

    Article  CAS  Google Scholar 

  20. Mesiano, S. & Jaffe, R.B. Endocr. Rev. 18, 378–403 (1997).

    CAS  PubMed  Google Scholar 

  21. Jaffe, R.B. et al. Endocr. Res. 24, 919–926 (1998).

    Article  CAS  Google Scholar 

  22. Spencer, S.J., Mesiano, S., Lee, J.Y. & Jaffe, R.B. J. Clin. Endocrinol. Metab. 84, 1110–1115 (1999).

    CAS  PubMed  Google Scholar 

  23. Dai, H.Y., Tsao, N., Leung, W.C. & Lei, H.Y. Radiat. Res. 150, 183–189 (1998).

    Article  CAS  Google Scholar 

  24. Neidhardt, F.C., Bloch, P.L. & Smith, D.F. J. Bacteriol. 119, 736–747 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Weigelt, J. J. Am. Chem. Soc. 120, 10778–10779 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank C. Arrowsmith for providing a plasmid containing the wild type p53tet DNA sequence, and members of the Molecular Oncogenesis Program at St. Jude and the Kriwacki and Zambetti laboratories for stimulating discussion. This work was supported by the American Lebanese Syrian Associated Charities, the American Cancer Society, the NCI and a Cancer Center (CORE) Support Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard W. Kriwacki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DiGiammarino, E., Lee, A., Cadwell, C. et al. A novel mechanism of tumorigenesis involving pH-dependent destabilization of a mutant p53 tetramer. Nat Struct Mol Biol 9, 12–16 (2002). https://doi.org/10.1038/nsb730

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb730

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing