Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of GSK3β reveals a primed phosphorylation mechanism

Abstract

GSK3β was identified as the kinase that phosphorylates glycogen synthase but is now known to be involved in multiple signaling pathways. GSK3β prefers prior phosphorylation of its substrates. We present the structure of unphosphorylated GSK3β at 2.7 Å. The orientation of the two domains and positioning of the activation loop of GSK3β are similar to those observed in activated kinases. A phosphate ion held by Arg 96, Arg 180 and Lys 205 occupies the same position as the phosphate group of the phosphothreonine in activated p38γ, CDK2 or ERK2. A loop from a neighboring molecule in the crystal occupies a portion of the substrate binding groove. The structure explains the unique primed phosphorylation mechanism of GSK3β and how GSK3β relies on a phosphoserine in the substrate for the alignment of the β- and α-helical domains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: The overall structure of GSK3β and comparison with activated substrate-bound CDK2.
Figure 3: Comparison between the activation loops of GSK3β and p38γ.
Figure 4: The GSK3β substrate binding groove.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Kim, L. & Kimmel, A.R. Curr. Opin. Genet. Dev. 10, 508–514 (2000).

    Article  CAS  Google Scholar 

  2. Woodgett, J.R. Semin. Cancer Biol. 5, 269–275 (1994).

    CAS  PubMed  Google Scholar 

  3. Ding, V.W., Chen, R.H. & McCormick, F. J. Biol. Chem. 275, 32475–32481 (2000).

    Article  CAS  Google Scholar 

  4. Summers, S.A. et al. J. Biol. Chem. 274, 17934–17940 (1999).

    Article  CAS  Google Scholar 

  5. Ross, S.E., Erickson, R.L., Hemati, N. & MacDougald, O.A. Mol. Cell Biol. 19, 8433–8441 (1999).

    Article  CAS  Google Scholar 

  6. Waltzer, L. & Bienz, M. Cancer Metastasis Rev. 18, 231–246 (1999).

    Article  CAS  Google Scholar 

  7. Ikeda, S. et al. EMBO. J. 17, 1371–1384 (1998).

    Article  CAS  Google Scholar 

  8. Thomas, G.M. et al. FEBS Lett. 458, 247–251 (1999).

    Article  CAS  Google Scholar 

  9. Salic, A., Lee, E., Mayer, L. & Kirschner, M.W. Mol. Cell 5, 523–532 (2000).

    Article  CAS  Google Scholar 

  10. Hanks, S.K. & Hunter, T. FASEB J. 9, 576–596 (1995).

    Article  CAS  Google Scholar 

  11. Woodgett, J.R. EMBO J. 9, 2431–2438 (1990).

    Article  CAS  Google Scholar 

  12. Hoeflich, K.P. et al. Nature 406, 86–90 (2000).

    Article  CAS  Google Scholar 

  13. Hanks, S.K., Quinn, A.M. & Hunter, T. Science 241, 42–52 (1988).

    Article  CAS  Google Scholar 

  14. Hanks, S.K. & Quinn, A.M. Methods Enzymol. 200, 38–62 (1991).

    Article  CAS  Google Scholar 

  15. Schulze-Gahmen, U. et al. Proteins 22, 378–391 (1995).

    Article  CAS  Google Scholar 

  16. Bellon, S., Fitzgibbon, M.J., Fox, T., Hsiao, H.M. & Wilson, K.P. Structure Fold. Des. 7, 1057–1065 (1999).

    Article  CAS  Google Scholar 

  17. Brown, N.R., Noble, M.E., Endicott, J.A. & Johnson, L.N. Nature Cell Biol. 1, 438–443 (1999).

    Article  CAS  Google Scholar 

  18. Canagarajah, B.J., Khokhlatchev, A., Cobb, M.H. & Goldsmith, E.J. Cell 90, 859–869 (1997).

    Article  CAS  Google Scholar 

  19. Hughes, K., Nikolakaki, E., Plyte, S.E., Totty, N.F. & Woodgett, J.R. EMBO J. 12, 803–808 (1993).

    Article  CAS  Google Scholar 

  20. Woodgett, J.R. & Cohen, P. Biochim. Biophys. Acta 788, 339–347 (1984).

    Article  CAS  Google Scholar 

  21. Kuret, J., Woodgett, J.R. & Cohen, P. Eur. J. Biochem. 151, 39–48 (1985).

    Article  CAS  Google Scholar 

  22. Leslie, A.G.W. Newslett. Protein Crystallogr . 26, 73–80 (1992).

    Google Scholar 

  23. Collaborative Computational Project 4. Acta Cryst. D 50, 760–763 (1994).

  24. Lawrie, A.M. et al. Nature Struct. Biol. 4, 796–801 (1997).

    Article  CAS  Google Scholar 

  25. Navaza, J. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

We thank K.P. Wilson for his advice, support and help in the preparation of the manuscript, R. Petrillo for protein expression and G. McDermott from Lawrence Berkeley Laboratories for help with data collection. We are grateful to V.L. Sato, J.A. Thomson, M.A. Murcko and M.S.-S. Su for their critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernst ter Haar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

ter Haar, E., Coll, J., Austen, D. et al. Structure of GSK3β reveals a primed phosphorylation mechanism. Nat Struct Mol Biol 8, 593–596 (2001). https://doi.org/10.1038/89624

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/89624

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing