Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase

Abstract

The Clp/Hsp100 ATPases are hexameric protein machines that catalyze the unfolding, disassembly and disaggregation of specific protein substrates in bacteria, plants and animals. Many family members also interact with peptidases to form ATP-dependent proteases. In Escherichia coli, for instance, the ClpXP protease is assembled from the ClpX ATPase and the ClpP peptidase. Here, we have used multiple sequence alignments to identify a tripeptide 'IGF' in E. coli ClpX that is essential for ClpP recognition. Mutations in this IGF sequence, which appears to be part of a surface loop, disrupt ClpXP complex formation and prevent protease function but have no effect on other ClpX activities. Homologous tripeptides are found only in a subset of Clp/Hsp100 ATPases and are a good predictor of family members that have a ClpP partner. Mapping of the IGF loop onto a homolog of known structure suggests a model for ClpX–ClpP docking.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Position of the proposed ClpP interaction loop in the ClpX and ClpA subfamilies.
Figure 2: ClpX mutants are active chaperones but defective in proteolysis.
Figure 3: ClpXI268E and ClpXF270W are defective in ClpP interaction.
Figure 4: Model for the location of the ClpP interaction loop based on the HslU structure.

Similar content being viewed by others

References

  1. Wang, J., Hartling, J.A. & Flanagan, J.M. Cell 91, 447–456 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Gottesman, S., Maurizi, M.R. & Wickner, S. Cell 91, 435–438 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Kessel, M. et al. J. Mol. Biol. 250, 587–594 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Rohrwild, M. et al. Nature Struct. Biol. 4, 133–139 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Hoskins, J.R., Pak, M., Maurizi, M.R. & Wickner, S. Proc. Natl. Acad. Sci. USA 95, 12135–12140 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schrimer, E.C., Glover, J.R., Singer, M.A. & Lindquist, S. Trends Biochem. Sci. 21, 289–296 (1996).

    Article  Google Scholar 

  7. Bochtler, M. et al. Nature 403, 800–805 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Sousa, M.C., Trame, C.B., Tsuruta, H., Wilbanks, S.M., Reddy, V.S. & McKay, D.B. Cell 103, 633–643 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Neuwald, A.F., Aravind, L., Spouge, J.L. & Koonin, E.V. Genome Res. 9, 27–43 (1999).

    CAS  PubMed  Google Scholar 

  10. Levchenko, I., Luo, L. & Baker, T.A. Genes Dev. 9, 2399–2408 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Kruklitis, R., Welty, D.J. & Nakai, H. EMBO J. 15, 935–944 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mhammedi-Alaoui, A., Pato, M., Gama, M. & Toussaint, A. Mol. Microbiol. 11, 1109–1116 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Makovets, S., Doronina, V.A. & Murray, N.E. Proc. Natl. Acad. Sci. USA 96, 9757–9762 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Levchenko, I., Yamauchi, M. & Baker, T.A. Genes Dev. 11, 1561–1572 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Kim, Y.-I. et al. Mol. Cell 5, 639–648 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Baker, T. A., Mizuuchi, M., Savilahti, H. & Mizuuchi, K. Cell 74, 723–733 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Yakhnin, A.V., Vinokurov, L.M., Surin, A.K. & Alakhov, Y.B. Protein Expr. Purif. 14, 382–386 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Gibson, T. & Higgins, Thompson, J. http://www.visac.uq.edu.au/course/ClustalX/clustalx.html (1994).

Download references

Acknowledgements

We thank E. Beade for preparation of Fig. 4b, L. Roldan for assistance with figures, and N. Murray for advice on the restriction alleviation assay. This work was supported by an NIH grant and the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tania A. Baker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, YI., Levchenko, I., Fraczkowska, K. et al. Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase. Nat Struct Mol Biol 8, 230–233 (2001). https://doi.org/10.1038/84967

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/84967

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing