Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of the electron transfer complex between ferredoxin and ferredoxin-NADP+ reductase

Abstract

All oxygenic photosynthetically derived reducing equivalents are utilized by combinations of a single multifuctional electron carrier protein, ferredoxin (Fd), and several Fd-dependent oxidoreductases. We report the first crystal structure of the complex between maize leaf Fd and Fd-NADP+ oxidoreductase (FNR). The redox centers in the complex — the 2Fe–2S cluster of Fd and flavin adenine dinucleotide (FAD) of FNR — are in close proximity; the shortest distance is 6.0 Å. The intermolecular interactions in the complex are mainly electrostatic, occurring through salt bridges, and the interface near the prosthetic groups is hydrophobic. NMR experiments on the complex in solution confirmed the FNR recognition sites on Fd that are identified in the crystal structure. Interestingly, the structures of Fd and FNR in the complex and in the free state differ in several ways. For example, in the active site of FNR, Fd binding induces the formation of a new hydrogen bond between side chains of Glu 312 and Ser 96 of FNR. We propose that this type of molecular communication not only determines the optimal orientation of the two proteins for electron transfer, but also contributes to the modulation of the enzymatic properties of FNR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of the Fd–FNR complex and PDR.
Figure 2: Structure of the interface of the Fd–FNR complex.
Figure 3: NMR chemical shift perturbation of Fd upon complex formation with FNR.
Figure 4: Structural perturbation of FNR induced by complex formation with Fd.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Knaff, D.B. In Photosynthesis; the light reactions. (eds Ort, D.R. & Yocum, C.F.) 333–361 (Kluwer Academic Publishers, Dordrecht; 1996).

    Google Scholar 

  2. Fukuyama, K. et al. Nature 286, 522–524 (1980).

    Article  CAS  Google Scholar 

  3. Karplus, P.A., Daniels, M.J. & Herriott, J.R. Science 251, 60–66 (1991).

    Article  CAS  Google Scholar 

  4. Dai, S. et al. Science 287, 655–658 (2000).

    Article  CAS  Google Scholar 

  5. Bruns, C.M. & Karplus, P.A. J. Mol. Biol. 247, 125–145 (1995).

    Article  CAS  Google Scholar 

  6. Zanetti, G. et al. Biochemistry 27, 3753–3759 (1988).

    Article  CAS  Google Scholar 

  7. De Pascalis, A.R. et al. Protein Sci. 2, 1126–1135 (1993).

    Article  CAS  Google Scholar 

  8. Aliverti, A., Corrado, M.E. & Zanetti, G. FEBS Lett. 343, 247–250 (1994).

    Article  CAS  Google Scholar 

  9. Akashi, T. et al. J. Biol. Chem. 274, 29399–29405 (1999).

    Article  CAS  Google Scholar 

  10. Hurley, J.K. et al. Protein Sci. 8, 1614–1622 (1999).

    Article  CAS  Google Scholar 

  11. De Pascalis, A.R., Schurmann, P. & Bosshard, F.R. FEBS Lett. 337, 217–220 (1994).

    Article  CAS  Google Scholar 

  12. Hurley, J.K. et al. J. Am. Chem. Soc. 115, 11698–11701 (1993).

    Article  CAS  Google Scholar 

  13. Matsumura, T. et al. Plant Physiol. 119. 481–488 (1999).

    Article  CAS  Google Scholar 

  14. Binda, C., Coda, A., Aliverti, A., Zanetti, G. & Mattevi, A. Acta Crystallogr. D 54, 1353–1358 (1998).

    Article  CAS  Google Scholar 

  15. Holden, H.M. et al. J. Bioenerg. Biomembr. 26, 67–88 (1994).

    Article  CAS  Google Scholar 

  16. Jacobson, B.L., Chae, Y.K., Markely, J.L. Rayment, I. & Holden, H.M. Biochemistry 33, 13321–13328 (1993).

    Google Scholar 

  17. Batie, C.J. & Kamin, H. J. Biol. Chem. 256, 7756–7763 (1981).

    CAS  PubMed  Google Scholar 

  18. Walker, M.C., Pueyo, J.J., Navarro, J.A., Gomez-Moreno, C. & Tollin, G. Arch. Biochem. Biophys. 287, 351–358 (1991).

    Article  CAS  Google Scholar 

  19. Kimata-Ariga, Y. et al. EMBO J. 19, 5041–5050 (2000).

    Article  CAS  Google Scholar 

  20. Aliverti, A. et al. J. Biol. Chem. 273, 34008–34015 (1998).

    Article  CAS  Google Scholar 

  21. Deng, Z., et al. Nature Struct. Biol. 6, 847–853 (1999).

    Article  CAS  Google Scholar 

  22. Correll, C.C., Batie, C.J., Ballou, D.P. & Ludwig, M.L. Science 258, 1604–1610 (1992).

    Article  CAS  Google Scholar 

  23. Correll, C.C., Ludwig, M.L., Bruns, C.M. & Karplus, P.A. Protein Sci. 2, 2112–2133 (1993)

    Article  CAS  Google Scholar 

  24. Onda, Y. et al. Plant Physiol. 123, 1037–1045 (2000).

    Article  CAS  Google Scholar 

  25. Rossmann, M.G. & van Beek, C.G. Acta Crystallogr. D 55, 1631–1640 (1999).

    Article  CAS  Google Scholar 

  26. CCP4. Acta Crystallogr. D 50, 760–763 (1994).

  27. Brünger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  28. Delaglio, F. et al. J. Biol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  29. Garrett, D.S., Powers, R., Gronenborn, A.M. & Clore, G.M. J. Magn. Reson. 95, 214–220 (1991).

    CAS  Google Scholar 

  30. Esnouf, R.M. J. Mol. Graph. 15, 132–134 (1997).

    Article  CAS  Google Scholar 

  31. Merritt, E.A. & Murphy, M.E.P. Acta Crystallogr. D 50, 869–873 (1994).

    Article  CAS  Google Scholar 

  32. Diederichs, K. & Karplus, P.A. Nature Struct. Biol. 4, 269–275 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Tsukihara (IPR, Osaka University), N. Kamiya (Riken), M. Kawamoto (JASRI), and N. Igarashi, M. Suzuki, N. Watanabe and N. Sakabe (PF, KEK) for their helpful discussions of crystallography, and R. Igarashi for the initial crystallization trial. This work was supported in part by grants-in-aid from the Ministry of Culture, Education, Science and Sports of Japan (G.K., M.K., O.Y. and T.H.), from the Ministry of Agriculture, Forestry and Fisheries of Japan (E.K.), and ACT-JST of Japan (M.K.) and the BRAIN, Japan (T.Y.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genji Kurisu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurisu, G., Kusunoki, M., Katoh, E. et al. Structure of the electron transfer complex between ferredoxin and ferredoxin-NADP+ reductase. Nat Struct Mol Biol 8, 117–121 (2001). https://doi.org/10.1038/84097

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/84097

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing