Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Arsenate reductase from S. aureus plasmid pI258 is a phosphatase drafted for redox duty

Abstract

Arsenate reductase (ArsC) from Staphylococcus aureus plasmid pI258 plays a role in bacterial heavy metal resistance and catalyzes the reduction of arsenate to arsenite. The structures of the oxidized and reduced forms of ArsC were solved. ArsC has the PTPase I fold typical for low molecular weight tyrosine phosphatases (LMW PTPases). Remarkably, kinetic experiments show that pI258 ArsC also catalyzes the tyrosine phosphatase reaction in addition to arsenate reduction. These results provide evidence that ArsC from pI258 evolved from LMW PTPase by the grafting of a redox function onto a pre-existing catalytic site and that its evolutionary origin is different from those of arsenate reductases from Escherichia coli plasmid R773 and from Saccharomyces cerevisiae. The mechanism proposed here for the catalysis of arsenate reduction by pI258 ArsC involves a nucleophilic attack by Cys 10 on arsenate, the formation of a covalent intermediate and the transport of oxidative equivalents by a disulfide cascade. The reaction is associated with major structural changes in the ArsC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structure of pI258 ArsC.
Figure 2: Parallel evolution of arsenate reductases.
Figure 3: Catalytic mechanism of pI258 ArsC.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Babbitt, P.C. & Gerlt, J.A. Adv. Protein Chem. 55, 1–28 (2000).

    CAS  PubMed  Google Scholar 

  2. Hasson, M.S. et al. Proc. Natl. Acad. Sci. USA 95, 10396–10401 (1998).

    Article  CAS  Google Scholar 

  3. Altamirano, M.M., Blackburn, J.M., Aguayo, C. & Fersht, A.R. Nature 403, 617–622 (2000).

    Article  CAS  Google Scholar 

  4. Silver, S. et al. Mol. Microbiol. 8, 637–642 (1993).

    Article  CAS  Google Scholar 

  5. Ji, G. & Silver, S. J. Bacteriol. 174, 3684–3694 (1992).

    Article  CAS  Google Scholar 

  6. Rosenstein, R., Peschel, A., Wieland, B. & Gotz, F. J. Bacteriol. 174, 3676–3683 (1992).

    Article  CAS  Google Scholar 

  7. Messens, J., Hayburn, G., Desmyter, A., Laus, G. & Wyns, L. Biochemistry 38, 16857–16865 (1999).

    Article  CAS  Google Scholar 

  8. Ji, G. et al. Biochemistry 33, 7294–7299 (1994).

    Article  CAS  Google Scholar 

  9. Stevens, S.Y. et al. Biochemistry 38, 10178–10186 (1999).

    Article  CAS  Google Scholar 

  10. Mukhopadhyay, R., Shi, J. & Rosen, B.P. J. Biol. Chem. 275, 21149–21157 (2000).

    Article  CAS  Google Scholar 

  11. Shi, J., Vlamis-Gardikas, A., Aslund, F., Holmgren, A. & Rosen, B.P. J. Biol. Chem. 274, 36039–36042 (1999).

    Article  CAS  Google Scholar 

  12. Shi, L., Potts, M. & Kennelly, P.J. FEMS Microbiol. Rev. 22, 229–253 (1998).

    Article  CAS  Google Scholar 

  13. Denu, J.M. & Dixon, J.E. Curr. Opin. Chem. Biol. 2, 633–641 (1998).

    Article  CAS  Google Scholar 

  14. Ramponi, G. & Stefani, M. Biochim. Biophys. Acta 1341, 137–156 (1997).

    Article  CAS  Google Scholar 

  15. Zhang, M., Stauffacher, C.V., Lin, D. & Van Etten, R.L. J. Biol. Chem. 273, 21714–21720 (1998).

    Article  CAS  Google Scholar 

  16. Messens, J. et al. J. Biol. Inorg. Chem. In the press. (2001).

  17. Jeffery, C.J. Trends Biochem. Sci. 24, 8–11 (1999).

    Article  CAS  Google Scholar 

  18. Hunter, T. Cell 80, 225–236 (1995).

    Article  CAS  Google Scholar 

  19. Kennelly, P.J. & Potts, M. Front. Biosci. 4, 372–385 (1999).

    Google Scholar 

  20. Zhang, Y.L. & Zhang, Z.Y. Anal. Biochem. 261, 139–148 (1998).

    Article  CAS  Google Scholar 

  21. Rusnak, F. & Reiter, T. Trends Biochem. Sci. 25, 527–529 (2000).

    Article  CAS  Google Scholar 

  22. Ab, E. et al. Protein Sci. 6, 304–314 (1997).

    Article  CAS  Google Scholar 

  23. Logan, T.M. et al. Biochemistry 33, 11087–11096 (1994).

    Article  CAS  Google Scholar 

  24. Lennon, B.W., Williams, C.H. & Ludwig, M.L. Science 289, 1190–1194 (2000).

    Article  CAS  Google Scholar 

  25. Katzen, F. & Beckwith, J. Cell 103, 769–779 (2000).

    Article  CAS  Google Scholar 

  26. Budisa, N. et al. Eur. J. Biochem. 230, 788–796 (1995).

    Article  CAS  Google Scholar 

  27. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  28. Collaborative Computational Project, Number 4. Acta Crystallogr. D 50, 760–763 (1994).

  29. Terwilliger, T.C. & Berendzen, J. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  30. Navaza, J. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  31. Brunger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  32. Esnouf, R.M. J. Mol. Graph. Model. 15, 132–133 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank R. Loris and D. Maes for help with data collection, K. Van Belle for the purification of the SeMet ArsC and A. Desmyter for the construction of the C89L mutant of pI258 ArsC. We are also grateful to P. Tucker for help with the MAD datacollection and Y. Geunes for help with figures. We thank S. Silver of the University of Illinois College of Medicine, Chicago, for providing us with the arsC gene of plasmid pI258. We thank the ESA program Prodex for funding for the study of crystallization processes. This work was funded in part by the VIB, Vlaams Interuniversitair instituut voor Biotechnologie and the Fund for Scientific Research Flanders (F.W.O.) (Belgium) and the Research Council of the VUB. J.C.M. is a Postdoctoral Fellow of the F.W.O.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Zegers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zegers, I., Martins, J., Willem, R. et al. Arsenate reductase from S. aureus plasmid pI258 is a phosphatase drafted for redox duty. Nat Struct Mol Biol 8, 843–847 (2001). https://doi.org/10.1038/nsb1001-843

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1001-843

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing