Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The structure of Pariacoto virus reveals a dodecahedral cage of duplex RNA

Abstract

The 3.0 Å resolution crystal structure of Pariacoto virus (PaV) reveals extensive interactions between portions of the viral RNA genome and the icosahedral capsid. Under the protein shell of the T = 3 quasi equivalent capsid lies a dodecahedral cage composed of RNA duplex that accounts for 35% of the single-stranded RNA genome. The highly basic N-terminal regions (residues 7–54) of the subunits, forming pentamers (A subunits) are clearly visible in the density map and make numerous interactions with the RNA cage. The C-terminal segments (residues 394–401) of the A subunits lie in channels near the quasi three-fold axes. Electron cryo-microscopy and image reconstruction of PaV particles clearly show the dodecahedral RNA cage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence alignment of PaV with FHV.
Figure 2: The structure of PaV.
Figure 3: The C-terminal segments.
Figure 4: The extended N-terminus of subunit A.
Figure 5: Stereo view of the electron density of the RNA duplex.
Figure 6: Three-dimensional reconstruction of PaV.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Zeddam, J.-L., Rodriguez, J.L., Ravallec, M. & Lagnaoui, A. A noda-like virus isolated from the sweet potato pest Spodoptera eridania (Cramer) (Lep.; Noctuidae). J. Inv. Pathol. 74, 267–274 (1999).

    Article  CAS  Google Scholar 

  2. Johnson, K.N., Zeddam, J.-L. & Ball, L.A. Characterization and construction of functional cDNA clones of Pariacoto virus, the first alphanodavirus isolated outside Australasia. J. Virol. 74, 5123–5132 (2000).

    Article  CAS  Google Scholar 

  3. Schneemann, A., Reddy, V. & Johnson, J.E. The structure and function of nodavirus particles: a paradigm for understanding chemical biology. Adv. Virus Res. 50, 381–446 (1998).

    Article  CAS  Google Scholar 

  4. Schneemann, A., Zhong, W., Gallagher, T.M. & Rueckert, R.R. Maturation cleavage required for infectivity of a nodavirus. J. Virol. 66, 6728–6734 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Cheng, R.H. et al. Functional implications of quasi-equivalence in a T=3 icosahedral animal virus established by cryo-electron microscopy and X-ray crystallography. Structure 2, 271–282 (1994).

    Article  CAS  Google Scholar 

  6. Bong, D.T., Steinem, C., Janshoff, A., Johnson, J.E. & Ghadiri, M.R. A highly membrane-active peptide in Flock House virus: implications for the mechanism of nodavirus infection. Chem. Biol. 6, 473–481 (1999).

    Article  CAS  Google Scholar 

  7. Fisher, A.J. & Johnson, J.E. Ordered duplex RNA controls capsid architecture in an icosahedral animal virus. Nature 361, 176–179 (1993).

    Article  CAS  Google Scholar 

  8. Wery, J.-P., Reddy, V.S., Hosur, M.V. & Johnson, J.E. The refined three-dimensional structure of an insect virus at 2.8 Å resolution. J. Mol. Biol. 235, 565–586 (1994).

    Article  CAS  Google Scholar 

  9. Dasgupta, R., Selling, B. & Rueckert, R. Flock House virus: a simple model for studying persistent infection in cultured Drosophila cells. Arch. Virol. (Suppl.) 9, 121–132 (1994).

    CAS  Google Scholar 

  10. Abad-Zapatero, C. et al. Structure of southern bean mosaic virus at 2.8 Å Resolution. Nature 286, 33–39 (1980).

    Article  CAS  Google Scholar 

  11. Harrison, S.C., Olson, A.J., Schutt, C.E., Winkler, F.K. & Bricogne, G. Tomato bushy stunt virus at 2.9 Å resolution. Nature 276, 368–373 (1978).

    Article  CAS  Google Scholar 

  12. Dong, X.F., Natarajan, P., Tihova, M., Johnson, J.E. & Schneemann, A. Particle polymorphism caused by deletion of a peptide molecular switch in a quasiequivalent icosahedral virus. J. Virol. 72, 6024–6033 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Schneemann, A. & Marshall D. Specific encapsidation of nodavirus RNAs is mediated through the C terminus of capsid precursor protein alpha. J. Virol. 72, 8738–8746 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Reddy, V.S. et al. Energetics of quasiequivalence: computational analysis of protein-protein interactions in icosahedral viruses. Biophys. J. 74, 546–558 (1998).

    Article  CAS  Google Scholar 

  15. Zhong, W., Dasgupta, R. & Rueckert, R. Evidence that the packaging signal for nodaviral RNA2 is a bulged stem-loop. Proc. Natl. Acad. Sci. USA 89, 11146–11150 (1992).

    Article  CAS  Google Scholar 

  16. Chow, M. et al. Myristylation of picornavirus capsid protein VP4 and its structural significance. Nature 327, 482–486 (1987).

    Article  CAS  Google Scholar 

  17. Otwinowski, Z. Data collection and processing. In Proceedings of the CCP4 study weekend: data collection and processing (eds Sawyer, L., Isaacs, N. & Baily, S.) 56–62 (Science and Engineering Research Council, Daresbury Laboratory, Daresbury, UK; 1993).

    Google Scholar 

  18. Tong, L. & Rossmann, M.G. The locked rotation function. Acta Crystallogr. A 46, 783–792 (1990).

    Article  Google Scholar 

  19. Jones, T.A. A set of averaging programs. In Proceedings of the CCP4 study weekend: molecular replacement (eds Dodson, E.J., Glover, S. & Wolf, W.) 91–105 (Science and Engineering Research Council, Daresbury Laboratory, Daresbury, UK; 1992).

    Google Scholar 

  20. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  21. Kleywegt, G.J. & Jones, T.A. Halloween . . . masks and bones. In Proceedings of the CCP4 study weekend: from first map to final model (eds Bailey, S., Hubbard, R. & Waller, D.) 56–66 (Science and Engineering Research Council, Daresbury Laboratory, Daresbury, UK; 1994).

    Google Scholar 

  22. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  23. Brünger, A.T. X-PLOR version 3.0 (Yale University, New Haven, Connecticut; 1992).

  24. Engh, R.A. & Huber, R. Accurate bond and angle parameters for X-ray protein structure refinement. Acta Crystallog. A 47, 392–400 (1991).

    Article  Google Scholar 

  25. Parkinson, G., Vojtechovsky, J., Clowney, L., Brünger, A.T. & Berman, H.M. New parameters for the refinement of nucleic acid-containing structures. Acta Crystallog. D 52, 57–64 (1996).

    Article  CAS  Google Scholar 

  26. Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996).

    Article  CAS  Google Scholar 

  27. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  28. Esnouf, R.M. An extensively modified version of MolScript that includes greatly enhanced coloring capacities. J. Mol. Graph. Model. 15, 132–134, 112–113 (1997).

    Article  CAS  Google Scholar 

  29. Merritt, E.A. & Murphy, M.E.P. Raster3D version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr. D 50, 869–873 (1994).

    Article  CAS  Google Scholar 

  30. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff at The Stanford Synchrotron Radiation Laboratory (SSRL) and at the BioCARS sector of The Advanced Photon Source (APS) for help in data collection, M. Tihova and K. Dryden for help in electron microscopy, V.S. Reddy for stimulating discussion, and A. Palmenberg and J.-Y. Sgro for RNA secondary structure predictions. This work was supported by NIH grants to L.A.B., J.E.J. and M.Y. During this work M.Y. was an Established Investigator of the American Heart Association and Bristol-Myers Squibb and is now a recipient of a Clinical Scientist Award in Translational Research from the Burroughs Wellcome Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John E. Johnson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, L., Johnson, K., Ball, L. et al. The structure of Pariacoto virus reveals a dodecahedral cage of duplex RNA. Nat Struct Mol Biol 8, 77–83 (2001). https://doi.org/10.1038/83089

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/83089

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing