Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of 2-oxoisovalerate and dehydrogenase and the architecture of 2-oxo acid dehydrogenase multienzyme complexes

Abstract

The family of giant multienzyme complexes metabolizing pyruvate, 2-oxoglutarate, branched-chain 2-oxo acids or acetoin contains several of the largest and most sophisticated protein assemblies known, with molecular masses between 4 and 10 million Da. The principal enzyme components, E1, E2 and E3, are present in numerous copies and utilize multiple cofactors to catalyze a directed sequence of reactions via substrate channeling. The crystal structure of a heterotetrameric (α2β2) E1, 2-oxoisovalerate dehydrogenase from Pseudomonas putida, reveals a tightly packed arrangement of the four subunits with the β2-dimer held between the jaws of a 'vise' formed by the α2-dimer. A long hydrophobic channel, suitable to accommodate the E2 lipoyl-lysine arm, leads to the active site, which contains the cofactor thiamin diphosphate (ThDP) and an inhibitor-derived covalent modification of a histidine side chain. The E1 structure, together with previous structural information on E2 and E3, completes the picture of the shared architectural features of these enormous macromolecular assemblies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental electron density.
Figure 2: Stereo views of the E1b subunits.
Figure 3: Structural organization of the heterotetrameric P. putida E1 α2β2.
Figure 4: a, Binding of the cofactor thiamin diphosphate at the active site of P. putida E1b.
Figure 5: The lipoyl-lysine arm of the E2 lipoyl domain visiting the active site of P. putida E1b.
Figure 6: Structural composite of the components of a 2-oxo acid dehydrogenase multienzyme complex and the dynamics of its functional cycle.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Reed, L.J. Multienzyme complexes. Accounts Chem. Res. 7, 40–46 (1974).

    Article  CAS  Google Scholar 

  2. Perham, R.N. Domains, motifs, and linkers in 2-oxo acid dehydrogenase multienzyme complexes: a paradigm in the design of a multifunctional protein. Biochemistry 30, 8501–8512 ( 1991).

    Article  CAS  Google Scholar 

  3. Izard, T. et al. Principles of quasi-equivalence and Euclidean geometry govern the assembly of cubic and dodecahedral cores of pyruvate dehydrogenase complexes. Proc. Natl. Acad. Sci. USA 96, 1240– 1245 (1999).

    Article  CAS  Google Scholar 

  4. Patel, M.S. & Roche, T.M. Molecular biology and biochemistry of pyruvate dehydrogenase complexes. FASEB J. 4, 3224–3233 (1990).

    Article  CAS  Google Scholar 

  5. Wynn, R.M., Davie, J.R., Meng, M. & Chuang, D.T. In Alpha-keto acid dehydrogenase complexes (eds Patel, M.S., Roche, T.E. & Harris, R.A.) 101–117 (Birkhäuser Verlag, Basel; 1996).

    Book  Google Scholar 

  6. Chuang, D.T. & Shih, V.E. In The metabolic and molecular bases of inherited disease (eds Scriver, C.R., Beudet, A.L., Sly, W.S. & Valle, D.) 1239–1227 (McGraw-Hill, New York; 1995).

    Google Scholar 

  7. Kerr, D.S., Wexler, I.D., Tripatara, A. & Patel, M.S. In Alpha-keto acid dehydrogenase complexes. (eds Patel, M.S., Roche, T.E. & Harris, R.A.) 249–267 (Birkhäuser Verlag, Basel; 1996).

    Book  Google Scholar 

  8. Massey, L.K., Sokatch, J.R., & Conrad, R.S. Branched-chain amino acid catabolism in bacteria. Bacteriol. Rev. 40, 42– 54 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hawkins, C.F., Borges, A. & Perham, R.N. A common structural motif in thiamin pyrophosphate-binding enzymes. FEBS Lett. 255, 77– 82 (1989).

    Article  CAS  Google Scholar 

  10. Perham, R.N. & Packman, L.C. 2-Oxo acid dehydrogenase multienzyme complexes: domains, dynamics and design. Ann. N.Y. Acad. Sci. 573, 1–20 (1989).

    Article  CAS  Google Scholar 

  11. Burns, G., Brown, T., Hatter, K., Idriss, J.M. & Sokatch, J.R. Similarity of the E1 subunits of branched-chain-oxoacid dehydrogenase from Pseudomonas putida to the corresponding subunits of mammalian branched-chain-oxoacid and pyruvate dehydrogenases. Eur. J. Biochem. 176, 311–317 (1988).

    Article  CAS  Google Scholar 

  12. Nikkola, M., Lindqvist, Y. & Schneider, G. Refined structure of transketolase from Saccharomyces cerevisiae at 2.0 Å resolution. J. Mol. Biol. 238, 387–404 (1994).

    Article  CAS  Google Scholar 

  13. Muller, Y.A. et al. A thiamin diphosphate binding fold revealed by comparison of the crystal structures of transketolase, pyruvate oxidase and pyruvate decarboxylase. Structure 1, 95– 103 (1993).

    Article  CAS  Google Scholar 

  14. Hasson, M.S. et al. The crystal structure of benzoylformate decarboxylase at 1.6 Å resolution: diversity of catalytic residues in thiamin diphosphate-dependent enzymes. Biochemistry 37, 9918– 9930 (1998).

    Article  CAS  Google Scholar 

  15. Chabrière, E., Charon, M.-H., Volbeda, A., Pieulle, L., Hatchikian, E.C. & Fontecilla-Camps, J.-C. Crystal structures of the key anaerobic enzyme pyruvate:ferredoxin oxidoreductase, free and in complex with pyruvate. Nature Struct. Biol. 6, 182– 190 (1999).

    Article  Google Scholar 

  16. Sundström, M., Lindqvist, Y., Schneider, G., Hellman, U. & Ronne, H. Yeast TKL1 gene encodes a transketolase that is required for efficient glycolysis and biosynthesis of aromatic amino acids. J. Biol. Chem. 268, 24346– 24352 (1993).

    PubMed  Google Scholar 

  17. Schneider, G. & Lindqvist, Y. Crystallography and mutagenesis of transketolase: mechanistic implications for enzymatic thiamin catalysis. Biochim. Biophys. Acta 1385, 387– 398 (1998).

    Article  CAS  Google Scholar 

  18. Guo, F., Zhang, D., Kahyaoglu, A., Farid, R.S. & Jordan, F. Is a hydrophobic amino acid required to maintain the reactive V conformation of thiamin at the active center of thiamin diphosphate-requiring enzymes? Experimental and computational studies of isoleucine 415 of yeast pyruvate decarboxylase. Biochemistry 37, 13379–13391 (1998).

    Article  CAS  Google Scholar 

  19. Schellenberger, A. Sixty years of thiamin diphosphate biochemistry. Biochim. Biophys. Acta 1385, 177–186 ( 1998).

    Article  CAS  Google Scholar 

  20. Hübner, G. et al. Activation of thiamin diphosphate in enzymes. Biochim. Biophys. Acta 1385, 221–228 (1998).

    Article  Google Scholar 

  21. Harris, R.A., Paxton, R. & DePaoli-Roach, A.A. Inhibition of branched chain α-ketoacid dehydrogenase kinase activity by α-chloroisocaproate. J. Biol. Chem. 257, 13915–13918 (1982).

    CAS  PubMed  Google Scholar 

  22. Bürgi, H.B., Dunitz, J.D., Lehn, J.M. & Wipff, G. Stereochemistry of reaction paths at carbonyl centres. Tetrahedron 30, 1563–1572 (1974).

    Article  Google Scholar 

  23. Hawes, J.W. et al. Roles of amino acid residues surrounding phosphorylation site 1 of branched-chain α-ketoacid dehydrogenase (BCKDH) in catalysis and phophorylation site recognition by BCKDH kinase. J. Biol. Chem. 270, 31071–31076 ( 1995).

    Article  CAS  Google Scholar 

  24. Hester, K., Luo, J., Burns, G., Braswell, E.H. & Sokatch, J.R. Purification of active E1α2β 2 of Pseudomonas putida branched-chain-oxoacid dehydrogenase. Eur. J. Biochem. 233, 828– 836 (1995).

    Article  CAS  Google Scholar 

  25. Korotchkina, L.G., Ali, M.S. & Patel, M.S. In Alpha-keto acid dehydrogenase complexes (eds Patel, M.S., Roche, T.E. & Harris, R.A.) 17–32 (Birkhäuser Verlag, Basel; 1996).

    Book  Google Scholar 

  26. Berg, A. & de Kok, A. 2-Oxo acid dehydrogenase multienzyme complexes. The central role of the lipoyl domain. Biol. Chem. 378, 617–634 (1997).

    CAS  PubMed  Google Scholar 

  27. Pan, K. & Jordan, F. D,L-S-Methyllipoic acid methyl ester, a kinetically viable model for S-protonated lipoic acid as the oxidizing agent in reductive acyl transfers catalyzed by the 2-oxoacid dehydrogenase multienzyme complexes. Biochemistry 37, 1357–1364 (1998).

    Article  CAS  Google Scholar 

  28. Yang, Y.S. & Frey, P.A. Dihydrolipoyl transacetylase of Escherichia coli. Formation of 8-S-acetyldihydrolipoamide. Biochemistry 25, 8173–8178 (1986).

    Article  CAS  Google Scholar 

  29. Perham, R.N. In Alpha-keto acid dehydrogenase complexes (eds Patel, M.S., Roche, T.E. & Harris, R.A.) 1–15 (Birkhäuser Verlag, Basel; 1996).

    Book  Google Scholar 

  30. Wynn, R.M. et al. Cloning and expression in Escherichia coli of mature E1β subunit of bovine mitochondrial branched-chain α-keto acid dehydrogenase complex. J. Biol. Chem. 267, 1881–1887 (1992).

    CAS  PubMed  Google Scholar 

  31. Mande, S.S., Sarfaty, S., Allen, M.D., Perham, R.N. & Hol, W.G.J. Protein–protein interactions in the pyruvate dehydrogenase multienzyme complex: dihydrolipoamide dehydrogenase complexed with the binding domain of dihydrolipoamide acetyltransferase. Structure 4, 277–286 (1996).

    Article  CAS  Google Scholar 

  32. Mattevi, A. et al. Atomic structure of the cubic core of the pyruvate dehydrogenase multienzyme complex. Science 255, 1544– 1550 (1992).

    Article  CAS  Google Scholar 

  33. Mattevi, A., Obmolova, G., Sokatch, J.R., Betzel, C. & Hol, W.G.J. The refined crystal structure of Pseudomonas putida lipoamide dehydrogenase complexed with NAD+ at 2.45 Å resolution. Proteins 13, 336–351 (1992).

    Article  CAS  Google Scholar 

  34. Kalia, Y.N. et al. The high-resolution structure of the peripheral subunit-binding domain of dihydrolipoamide acetyltransferase from the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus. J. Mol. Biol. 230, 323–341 ( 1993).

    Article  CAS  Google Scholar 

  35. Dardel, F., Davis, A.L., Laue, E.D. & Perham, R.N. Three-dimensional structure of the lipoyl domain from Bacillus stearothermophilus pyruvate dehydrogenase multienzyme complex. J. Mol. Biol. 229 , 1037–1048 (1993).

    Article  CAS  Google Scholar 

  36. Mattevi, A., Obmolova, G., Kalk, K.H., Teplyakov, A. & Hol, W.G.J. Crystallographic analysis of substrate binding and catalysis in dihydrolipoyl transacetylase. Biochemistry 32, 3887–3901 (1993).

    Article  CAS  Google Scholar 

  37. Bagdasarian, M.M. et al. Specific-purpose plasmid cloning vectors. II. Broad host range, high copy number, RSF1010-derived vectors, and a host-vector system for gene cloning in Pseudomonas. Gene 16, 237–247 (1981).

    Article  CAS  Google Scholar 

  38. Sykes, P.J., Menard, J., McCully, V. & Sokatch, J.R. Conjugative mapping of pyruvate, 2-ketoglutarate, and branched-chain keto acid dehydrogenase genes in Pseudomonas putida mutants. J. Bacteriol. 162, 203–208 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 277, 307–326 ( 1997).

    Article  Google Scholar 

  40. Collaborative Computational Project Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 ( 1994).

  41. Navazza, J. AMoRe, an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 ( 1994).

    Article  Google Scholar 

  42. de La Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement in the MIR and MAD methods. Methods Enzymol. 276, 472–494 (1997).

    Article  CAS  Google Scholar 

  43. Abrahams, J.P. & Leslie, A.G.W. Methods used in the structure determination of bovine mitochondral F1 ATPase. Acta Crystallogr. D 52, 30– 42 (1996).

    Article  CAS  Google Scholar 

  44. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  45. Brünger, A.T., Krukowski, A. & Erickson, J.W. Slow-cooling protocols for crystallographic refinement by simulated annealing. Acta Crystallogr. A 46, 585–593 (1990).

    Article  Google Scholar 

  46. Brünger, A.T., et al. Crystallography and NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  47. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946 –950 (1991).

    Article  Google Scholar 

  48. Esnouf, R.M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph. 15, 132–134 (1997).

    Article  CAS  Google Scholar 

  49. Nicholls, A., Shar, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Gen. 11, 282–296 (1991).

    Article  Google Scholar 

  50. Merritt, E.A. & Murphy, M.E.P. Raster3D Version 2.0—a program for photorealistic molecular graphics. Acta Crystallogr. D 50, 869–873 ( 1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of the Biomolecular Structure Center for assistance and support, in particular S.S. Antonysamy, F. Athappilly, E. Merritt, E. Pohl, M. Redinbo and S. Sarfaty. Access to synchrotron sources SSRL (7.1), CHESS (F1) and ESRF (BM14) is deeply appreciated, and we thank the staff for their assistance. Postdoctoral grant from The Swedish Foundation for International Cooperation in Research and Higher Education (STINT) to A.Æ. is gratefully acknowledged. W.G.J.H. acknowledges a major equipment grant from the Murdock Charitable Trust to the Biomolecular Structure Center. This research was supported by grants from NIH and Presbyterian Health Foundation to J.R.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim G.J. Hol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ævarsson, A., Seger, K., Turley, S. et al. Crystal structure of 2-oxoisovalerate and dehydrogenase and the architecture of 2-oxo acid dehydrogenase multienzyme complexes. Nat Struct Mol Biol 6, 785–792 (1999). https://doi.org/10.1038/11563

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/11563

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing