Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Solution structure of the 40,000 Mr phosphoryl transfer complex between the N-terminal domain of enzyme I and HPr

Abstract

The solution structure of the first protein–protein complex of the bacterial phosphoenolpyruvate: sugar phosphotransferase system between the N–terminal domain of enzyme I (EIN) and the histidine–containing phosphocarrier protein HPr has been determined by NMR spectroscopy, including the use of residual dipolar couplings that provide long–range structural information. The complex between EIN and HPr is a classical example of surface complementarity, involving an essentially all helical interface, comprising helices 2, 2', 3 and 4 of the α–subdomain of EIN and helices 1 and 2 of HPr, that requires virtually no changes in conformation of the components relative to that in their respective free states. The specificity of the complex is dependent on the correct placement of both van der Waals and electrostatic contacts. The transition state can be formed with minimal changes in overall conformation, and is stabilized in favor of phosphorylated HPr, thereby accounting for the directionality of phosphoryl transfer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strips taken from a, the 3D12 C–filtered(F1)/13C–separated(F2) NOE spectrum recorded on a 1:1 15N/13C/1H EIN:14N/12C/1H HPr complex and b, the 3D 13C–separated(F2)/12C–filtered(F3) NOE spectrum recorded on a 1:1 14N/12C/1H EIN:15N/13C/1H HPr complex, illustrating specifically intermolecular NOE contacts between 13C–attached protons of one component and 12C–attached protons of the other.
Figure 2: Structure of the EIN–HPr complex.
Figure 3: EIN–HPr interactions.
Figure 4: The transition state.
Figure 5: Sequence comparison of HPrs and EIs from E. coli, B. subtilis and M. capricolum around the regions associated with the EIN–HPr interface.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Postma, P.W., Lengeler, J.W. & Jacobson, G.R. Phosphoenolpyruvate:carbohydrate phosphotransferase systems. In Escherichia coli and Salmonella: Cellular and Molecular Biology (ed. Neidhardt F.C.) 1149–1174 (ASM Press, Washington DC; 1996).

  2. Herzberg, O & Klevit R. Unraveling a bacterial hexose transport pathway. Curr. Opin. Struct. Biol. 4, 814–822 (1994).

    Article  CAS  Google Scholar 

  3. Licalsi, C., Crocenzi, T.S., Freire, E. & Roseman, S. Sugar transport by the bacterial phosphotransferase system: structural and thermodynamic domains of Enzyme I of Salmonella typhimurium. J. Biol. Chem. 266, 19519–19527 (1991).

    CAS  PubMed  Google Scholar 

  4. Lee, B.R., Lecchi, P., Pannell, L., Jaffe, H. & Peterkofsky, A. Identification of the N–terminal domain of Enzyme I of the Escherichia coli phosphoenolpyruvate:sugar phosphotransfease system produced by proteolytic digestion. Arch. Biochem. Biophys. 312, 121–124 ( 1994).

    Article  CAS  Google Scholar 

  5. Seok, Y.–J., Lee, B.R., Zhu, P.–P. & Peterkofsky, A. Importance of the carboxyl terminal domain of Enzyme I of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system for phosphoryl donor specificity. Proc. Natl. Acad. Sci. USA 93, 347–351 (1996).

    Article  CAS  Google Scholar 

  6. Chauvin, F., Fomenkov, A., Johnson, C.R. & Roseman, S. The N–terminal domain of Escherichia coli enzyme I of the phosphoenolpyruvate/glycose phosphotransferase system: molecular cloning and characterization. Proc. Natl. Acad. Sci. USA 93, 7028– 7031 (1996).

    Article  CAS  Google Scholar 

  7. Liao, D.–I. et al. The first step in sugar transport: crystal structure of the amino terminal domain of enzyme I of the E coli PEP:sugar phosphotransferase system and a model of the phosphotransfer complex with HPr. Structure 4, 861–872 ( 1996).

    Article  CAS  Google Scholar 

  8. Garrett, D.S. et al. Solution structure of the 30 kDa N–terminal domain of Enzyme I of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system by multidimensional NMR. Biochemistry 36, 2517–2530 (1997).

    Article  CAS  Google Scholar 

  9. Wittekind, M. et al. Solution structure of the phosphocarrier protein HPr from Bacillus subtilis by two–dimensional NMR spectroscopy. Prot. Sci. 1, 1363–1376 ( 1992).

    Article  CAS  Google Scholar 

  10. Herzberg, O. et al. Structure of the histidine–containing phosphocarrier protein HPr from Bacillus subtilis at 2.0 Å resolution. Proc. Natl. Acad. Sci. USA 89, 2499– 2503 (1992).

    Article  CAS  Google Scholar 

  11. Kalbitzer, H.R. & Henstenberg, W. The solution structure of the histidine–containing protein (HPr) from Staphylococcus aureus as determined by two–dimensional 1H–NMR spectroscopy. Eur. J. Biochem. 216, 205– 214 (1993).

    Article  CAS  Google Scholar 

  12. Jia, Z., Quail, J.W., Waygood, E.B. & Delbaere, L.T. The 2.0 Å resolution structure of the Escherichia coli histidine–containing phosphocarrier protein HPr: a redetermination. J. Biol. Chem. 268, 22490–22501 (1993).

    CAS  PubMed  Google Scholar 

  13. van Nuland, N.A. et al. The high–resolution structure of the histidine–containing phosphocarrier protein HPr from Escherichia coli determined by restrained molecular dynamics from nuclear magnetic resonance nuclear Overhauser effect data. J. Mol. Biol. 237, 544– 559 (1994).

    Article  CAS  Google Scholar 

  14. van Nuland, N.A.J., Boelens, R., Scheek, R.M. & Robillard, G.T. High–resolution structure of the phosphorylated form of the histidine–containing phosphocarrier protein HPr from Escherichia coli determined by restrained molecular dynamics from NMR–NOE data. J. Mol. Biol. 246, 180–193 (1995).

    Article  CAS  Google Scholar 

  15. Jones, B.E., Rajgopal, P. & Klevit, R.E. Phosphorylation on histidine is accompanied by localized structural changes in phosphocarrier protein HPr from Bacillus subtilis . Prot. Sci. 6, 2107– 2119 (1997).

    Article  CAS  Google Scholar 

  16. Liao, D.–I. et al. Structure of the IIA domain of the glucose permease of Bacillus subtilis at 2.2 Å resolution. Biochemistry 30, 9583–9594 (1991).

    Article  CAS  Google Scholar 

  17. Worthylake, D. et al. Three–dimensional structure of the Escherichia coli phosphocarrier protein IIIglc. Proc. Natl. Acad. Sci. USA 88, 10382–10386 (1991).

    Article  CAS  Google Scholar 

  18. Fairbrother, W.J., Gippert, G.P., Reizer, J., Saier, M.H. & Wright, P.E. Low resolution structure of Bacillus subtilis glucose pemease IIA derived from heteronuclear three–dimensional NMR spectroscopy. FEBS Lett. 296, 148– 152 (1992).

    Article  CAS  Google Scholar 

  19. Hurley, J.H. et al. Structure of the regulatory complex of Escherichia coli IIIglc with glycerol kinase. Science 259, 673–677 (1993).

    Article  CAS  Google Scholar 

  20. Huang, K., Kapadia, G., Zhu, P.–P., Peterkofsky, A. & Herzberg, O. A promiscuous binding surface: crystal structure of the IIA domain of the glucose–specific permease from Mycoplasma capricolum. Structure 6, 697–710 (1998).

    Article  CAS  Google Scholar 

  21. Garrett, D.S., Seok,Y.–J., Peterkoksky, A., Clore, G.M. & Gronenborn, A.M. Identification by NMR of the binding surface for the histidine–containing phosphocarrier protein HPr on the N–terminal domain of Enzyme I of the Escherichia coli phosphotransferase system. Biochemistry 36, 4393–4398 (1997).

    Article  CAS  Google Scholar 

  22. Clore, G.M., Gronenborn, A.M., Szabo, A. & Tjandra, N. Determining the magnitude of the fully asymmetric diffusion tensor from heteronuclear relaxation data in the absence of structural information. J. Am. Chem. Soc. 120, 4889–4890 (1998).

    Article  CAS  Google Scholar 

  23. Clore, G.M. & Gronenborn, A.M. Determining structures of large proteins and protein complexes by NMR. Trends Biotech. 16, 22–34 (1998).

    Article  CAS  Google Scholar 

  24. Nilges, M., Gronenborn, A.M., Brünger, A.T. & Clore, G.M. Determination of three–dimensional structures of proteins by simulated annealing with interproton distance restraints: application to crambin, potato carboxypeptidase inhibitor and barley serine proteinase inhibitor 2. Prot. Engng. 2, 27–38 ( 1988).

    Article  CAS  Google Scholar 

  25. Clore, G.M., Starich, M.R. & Gronenborn, A.M. Measurement of residual dipolar couplings of macromolecules aligned in the nematic phase of a colloidal suspension of rod–shaped viruses. J. Am. Chem. Soc. 120, 10571– 10572.

  26. Tjandra, N., Omichinski, J.G., Gronenborn, A.M., Clore, G.M. & Bax, A. Use of dipolar 1H–15N and 1H–13C couplings in the structure determination of magnetically oriented macromolecules in solution. Nature Struct. Biol. 4, 732– 738 (1997).

    Article  CAS  Google Scholar 

  27. Omichinski, J.G., Pedone, P.V., Felsenfeld, G., Gronenborn, A.M. & Clore, G.M. The solution structure of a specific GAGA factor–DNA complex reveals a modular binding mode. Nature Struct. Biol. 4, 122–132 (1997).

    Article  CAS  Google Scholar 

  28. Reizer, J. et al. Mechanistic and physiological consequences of HPr (ser) phosphorylation on the activities of the phosphoenolpyruvate:sugar phosphotransferase system in Gram–positive bacteria: studies with site–specific mutants of HPr. EMBO J. 8, 2111– 2120 (1989).

    Article  CAS  Google Scholar 

  29. Napper, S. et al. Mutation of Serine–46 to aspartate in the histidine–containing protein of Escherichia coli mimics the inactivation by phosphorylation of Serine–46 in HPrs from gram–positive bacteria. Biochemistry 35, 11260–11267 ( 1996).

    Article  CAS  Google Scholar 

  30. Weigel, N., Kukuruzinska, M.A., Nakazawa, A., Waygood, E.B. & Roseman, S. Sugar transport by the bacterial phosphotransferase system: phosphoryl transfer reactions catalyzed by Enzyme I of Salmonella typhimurium. J. Biol. Chem. 257, 14477–14491 (1982).

    CAS  PubMed  Google Scholar 

  31. Garrett, D.S., Seok, Y.–J., Peterkofsky, A., Clore, G.M. & Gronenborn, A.M. Tautomeric state and pK a of the phosphorylated active site histidine in the N–terminal domain of Enzyme I of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system. Prot. Sci. 7, 789–793 (1998).

    Article  CAS  Google Scholar 

  32. Weigel, N., Powers, D.A. & Roseman, S. Sugar transport by the bacterial phosphotransferase system: primary structure and active site of a general phosphocarrier (HPr) from Salmonella typhimurium. J. Biol. Chem. 257, 14499–14509 (1982).

    CAS  PubMed  Google Scholar 

  33. Begley, G.S., Hansen, D.E., Jacobson, G.R. & Knowles, J.R. Stereochemical course of the reactions catalyzed by the bacterial phosphoenolpyruvate:glucose phosphotransferase system. Biochemistry 21, 5552–5556.

  34. Herzberg, O. An atomic model for protein–protein phosphoryl group transfer. J. Biol. Chem. 267, 24819–24823 (1992).

    CAS  PubMed  Google Scholar 

  35. Andersen, J.W., Pullen, J.K., Georges, F., Klevit, R.E. & Waygood, R.E. The involvement of the arginine 17 residue in the active site of the histidine–containing protein, HPr, of the phosphoenolpyruvate:sugar phosphotransferase system of Escherichia coli. J. Biol. Chem. 268, 12325– 12333 (1993).

    Google Scholar 

  36. Nosworthy, N.J. et al. Phosphorylation destabilizes the amino–terminal domain of Enzyme I of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system. Biochemistry 37, 65718–6726 (1998).

    Article  Google Scholar 

  37. Reizer, J., Sutrina, S.L., Wu, L.–F., Deutscher, J., Reddy, P. & Saier, M.H. Functional interactions between proteins of the phosphoenolpyruvate:sugar phosphotransferase systems of Bacillus subtilis and Escherichia coli. J. Biol. Chem. 267, 9158– 9169 (1992).

    CAS  PubMed  Google Scholar 

  38. Zhu, P.–P., Reizer, J. & Peterkofsky, A. Unique dicistronic operon (ptsI–crr) in Mycoplasma capricolum encoding Enzyme I and the glucose–specific Enzyme IIA of the phosphoenolpyruvate: sugar phosphotransferase system: cloning, sequencing, promoter analysis, and protein characterization. Prot. Sci. 3, 2115–2128 ( 1994).

    Article  CAS  Google Scholar 

  39. Zhu, P.–P., Reizer, J., Reizer, A. & Peterkofsky, A. Unique monocistronic operon (ptsH) in Mycoplasma capricolum encoding the phosphocarrier protein (HPr) of the phosphoenolpyruvate: sugar phosphotransferase system. J. Biol. Chem. 268, 26531– 26540 (1993).

    CAS  PubMed  Google Scholar 

  40. Ottiger, M., Delaglio, F. & Bax, A. Measurement of J and dipolar couplings from simplified two–dimensional NMR spectra. J. Magn. Reson. 131, 173–178 (1998).

    Article  Google Scholar 

  41. Clore, G.M., Gronenborn, A.M. & Bax, A. A robust method for determining the magnitude of the fully asymmetric alignment tensor of oriented macromolecules in the absence of structural information. J. Magn. Reson. 133, 216–221 (1998).

    Article  CAS  Google Scholar 

  42. Clore, G.M. & Gronenborn, A.M. New methods of structure refinement for macromolecular structure determination by NMR. Proc. Natl. Acad. Sci. USA 95, 5891–5898 (1998).

    Article  CAS  Google Scholar 

  43. Brünger, A.T. et al. Crystallography and NMR system (CNS): a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 901–921 ( 1998).

    Article  Google Scholar 

  44. Koradi, R., Billeter, M. & Wüthrich, K. MOLMOL. A program for display and analysis of macromolecular structures. J. Mol. Graphics. 14, 51– 55 (1996).

    Article  CAS  Google Scholar 

  45. Carson, M. Ribbons 4.0. J. Appl. Crystallogr. 24, 958 –961 (1991).

    Article  Google Scholar 

  46. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283– 291 (1993).

    Article  CAS  Google Scholar 

  47. Kuszewski, J., Gronenborn, A.M. & Clore, G.M. Improving the quality of NMR and crystallographic protein structures by means of a conformational database potential derived from structure databases. Prot. Sci. 5, 1067–1080 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the AIDS Targeted Antiviral Program of the Office of the Director of the National Institutes of Health (to G.M.C. and A.M.G.). We thank R. Tschudin for technical hardware support; G. Cornilescu, F. Delaglio and A. Bax for the use of the program TALOS; J. Louis for preparation of fd phage; and A. Bax, M. Starich and N. Tjandra for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Angela M. Gronenborn or G. Marius Clore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garrett, D., Seok, YJ., Peterkofsky, A. et al. Solution structure of the 40,000 Mr phosphoryl transfer complex between the N-terminal domain of enzyme I and HPr. Nat Struct Mol Biol 6, 166–173 (1999). https://doi.org/10.1038/5854

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/5854

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing