Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of transhydrogenase domain III at 1.2 Å resolution

Abstract

The nicotinamide nucleotide transhydrogenases (TH) of mitochondria and bacteria are membrane-intercalated proton pumps that transduce substrate binding energy and protonmotive force via protein conformational changes. In mitochondria, TH utilizes protonmotive force to promote direct hydride ion transfer from NADH to NADP, which are bound at the distinct extramembranous domains I and III, respectively. Domain II is the membrane-intercalated domain and contains the enzyme's proton channel. This paper describes the crystal structure of the NADP(H) binding domain III of bovine TH at 1.2 Å resolution. The structure reveals that NADP is bound in a manner inverted from that previously observed for nucleotide binding folds. The non-classical binding mode exposes the NADP(H) nicotinamide ring for direct contact with NAD(H) in domain I, in accord with biochemical data. The surface of domain III surrounding the exposed nicotinamide is comprised of conserved residues presumed to form the interface with domain I during hydride ion transfer. Further, an adjacent region contains a number of acidic residues, forming a surface with negative electrostatic potential which may interact with extramembranous loops of domain II. Together, the distinctive surface features allow mechanistic considerations regarding the NADP(H)-promoted conformation changes that are involved in the interactions of domain III with domains I and II for hydride ion transfer and proton translocation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a,Stereo figure of the electron density for NADP in domain III of bovine TH at 1.2 Å resolution.
Figure 2: Alignment of sequences of TH domains homologous with domain III of bovine TH.
Figure 3: Stereo view showing the details of the NADP binding site.
Figure 4: a, The distribution of conserved (yellow) and semi-conserved (green) residues on the surface of domain III.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Hatefi, Y. & Yamaguchi, M. FASEB J. 10, 444–452 (1996).

    Article  CAS  Google Scholar 

  2. Hatefi, Y. & Yamaguchi, M. in Molecular mechanisms in bioenergetics (ed. Ernster, L.) 265–281 (Elsevier Science Publisher, Amsterdam, 1992).

    Book  Google Scholar 

  3. Jackson, J.B., et al. Biochim. Biophys. Acta 1365, 79– 86 (1998).

    Article  CAS  Google Scholar 

  4. Rydström, J. et al. Biochim. Biophys. Acta 1365, 10– 16 (1998).

    Article  Google Scholar 

  5. Clarke, D.M. & Bragg, P.D. Eur. J. Biochem. 149 , 517–523 (1985).

    Article  CAS  Google Scholar 

  6. Yamaguchi, M. & Hatefi, Y. J. Biol. Chem. 268, 17871–17877 (1993).

    CAS  PubMed  Google Scholar 

  7. Yamaguchi, M. & Hatefi, Y. J. Biol. Chem. 270, 28165–28168 (1995).

    Article  CAS  Google Scholar 

  8. Yamaguchi, M. & Hatefi, Y. Biochim. Biophys. Acta 1318, 225–234 (1997).

    Article  CAS  Google Scholar 

  9. Bellamacina, C.R. FASEB J. 10, 1257–1269 ( 1996).

    Article  CAS  Google Scholar 

  10. Wakabayashi, S. & Hatefi, Y. Biochem. Int. 15, 915–924 (1987).

    CAS  PubMed  Google Scholar 

  11. Yamaguchi, M. & Hatefi, Y. Biochemistry 28, 6050–6056 (1989).

    Article  CAS  Google Scholar 

  12. Ahmad, S., Glavas, N.A. & Bragg, P.D. Eur. J. Biochem. 207, 733– 739 (1992).

    Article  CAS  Google Scholar 

  13. Olausson, T., et al. Biochemistry 32, 13237– 13244 (1993).

    Article  CAS  Google Scholar 

  14. Mueller, J., Hu, X., Bunthof, C. Olausson, T. & Rydström, J. Biochim. Biophys. Acta 1273, 191–194 (1996).

    Article  Google Scholar 

  15. Bragg, P.D., Glavas, N.A. & Hou, C. Arch. Biochem. Biophys. 338, 57 –66 (1997).

    Article  CAS  Google Scholar 

  16. Hu, X., Zhang, J., Fjellström, O., Bizouarn, T. & Rydström, J. Biochemistry 38 , 1652–1658 (1999).

    Article  CAS  Google Scholar 

  17. Fjellström, O., et al. J. Biol. Chem. 274, 6350– 6359 (1999).

    Article  Google Scholar 

  18. Johansson, C., Bergkvist, A., Fjellström, O., Rydström, J. & Karlsson, B.G. FEBS Lett. 458, 180–184 (1999).

    Article  CAS  Google Scholar 

  19. Quirk, P.G., Jeeves, M., Cotton, N.P.J., Smith, J.K. & Jackson, B.J. FEBS Lett. 446, 127–132 (1999).

    Article  CAS  Google Scholar 

  20. Leslie, A.G.W. Acta Crystallogr. D50, 760–763 (1994).

    Google Scholar 

  21. Otwinowski, Z. Acta Crystallogr. D50, 760–763 (1994).

    Google Scholar 

  22. Cowtan, K. NATO ASI Ser., Ser. C, 507, 329–337 (1998).

    Google Scholar 

  23. McRee, D.E. J. Struct. Biol. 125, 156–165 (1999).

    Article  CAS  Google Scholar 

  24. Brünger, A.T., et al. Acta Cryst. D54, 905– 921 (1998).

    Google Scholar 

  25. Sheldrick, G.M. & Schneider, T.R. Methods Enzymol. 277, 319–343 ( 1997).

    Article  CAS  Google Scholar 

  26. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. J Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  27. McRee, D.E. Molecular Images Software, San Diego, CA (1999).

  28. Altschul, S.F., et al. Nucleic Acids Res. 25, 3389– 3402 (1997).

    Article  CAS  Google Scholar 

  29. Bruns, C. M. http://www.scripps.edu/~bruns/sequoia.html (1999).

  30. Kraulis, P.J. J. Appl. Cryst. 24, 946–950 (1991).

    Article  Google Scholar 

  31. Nicholls, A., Sharp, K.A. & Honig, B. Proteins 11, 281– 296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank N. Kresge for preparing several of the figures and the staff of the Stanford Synchrotron Radiation Laboratory for their generous assistance. The authors are indebted to U. Genick and E. Getzoff for their generous assistance in the use of their single crystal microspectrophotometer. This work was supported by a United States Public Health Service Grant to Y. Hatefi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. David Stout.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, G., Sridhar, V., Yamaguchi, M. et al. Crystal structure of transhydrogenase domain III at 1.2 Å resolution . Nat Struct Mol Biol 6, 1126–1131 (1999). https://doi.org/10.1038/70067

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/70067

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing