Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Insight
  • Published:

Tubulin and FtsZ form a distinct family of GTPases

Abstract

Tubulin and FtsZ share a common fold of two domains connected by a central helix. Structure-based sequence alignment shows that common residues localize in the nucleotide-binding site and a region that interacts with the nucleotide of the next tubulin subunit in the protofilament, suggesting that tubulin and FtsZ use similar contacts to form filaments. Surfaces that would make lateral interactions between protofilaments or interact with motor proteins are, however, different. The highly conserved nucleotide-binding sites of tubulin and FtsZ clearly differ from those of EF-Tu and other GTPases, while resembling the nucleotide site of glyceraldehyde-3-phosphate dehydrogenase. Thus, tubulin and FtsZ form a distinct family of GTP-hydrolyzing proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Hyams, J.S. & Lloyd, C.W. Microtubules (Wiley-Liss, New York; 1993).

    Google Scholar 

  2. Kreis, T. & Vale, R. Guidebook to the cytoskeleton and motor proteins (Oxford University Press, New York; 1993).

    Google Scholar 

  3. Weisenberg, R.C., Borisy, G.G. & Taylor, E.W. The colchicine-binding protein of mammalian brain and its relation to microtubules. Biochemistry 7, 4466–4479 (1968).

    Article  CAS  Google Scholar 

  4. Nath, J.P. & Himes, R.H. Localization of the exchangeable nudeotide binding domain in β-tubulin. Bioch. Biophy. Res. Com. 135, 1135–1143 (1986).

    Article  CAS  Google Scholar 

  5. Carlier, M.F. & Pantaloni, D. Kinetic analysis of guanosine 5′-triphosphate hydrolysis associated with tubulin polymerization. Biochemistry 20, 1918–1924 (1981).

    Article  CAS  Google Scholar 

  6. Downing, K.H. & Jontes, J. Projection map of tubulin in zinc-induced sheets at 4 Å resolution. J. Struct. Biol. 109, 152–159 (1992).

    Article  CAS  Google Scholar 

  7. Nogales, E., Wolf, S.G., Khan, I.A., Ludueña, R.F. & Downing, K.H. Structure of tubulin at 6.5 Å and location of the taxol-binding site. Nature 375, 424–427 (1995).

    Article  CAS  Google Scholar 

  8. Gaskin, F. & Kress, Y. Zinc ion-induced assembly of tubulin. J, Biol. Chem. 252, 6918–6924 (1977).

    CAS  Google Scholar 

  9. Amos, L.A. & Baker, T.S. The three-dimensional structure of tubulin protofilaments. Nature 279, 607–612 (1979).

    Article  CAS  Google Scholar 

  10. Nogales, E., Wolf, S.G., Zhang, S.X. & Downing, K.H. Preservation of 2-D crystals of tubulin for electron crystallography. J. Struct. Biol. 115, 199–208 (1995).

    Article  CAS  Google Scholar 

  11. Nogales, E., Wolf, S.G. & Downing, K.H. Structure of the αβ tubulin dimer by electron crystallography. Nature 391, 199–203 (1998).

    Article  CAS  Google Scholar 

  12. Erickson, H.P. FtsZ, a prokariotic homolog of tubulin? Cell 80, 367–370 (1995).

    Article  CAS  Google Scholar 

  13. de Pereda, J.M., Leynadier, D., Evangelic, J.A., Chacon, P. & Andreu, J.M. Tubulin secondary structure analysis, limited proteolysis sites, and homology to FtsZ. Biochemistry 35, 14203–14215 (1996).

    Article  CAS  Google Scholar 

  14. Donachie, W.D. The cell cycle of Escherkhia coli. Ann. Rev. Microbiol. 47, 199–230 (1993).

    Article  CAS  Google Scholar 

  15. Rothfield, L.I. & Justice, S.S. Bacterial cell division: the cycle of the ring. Cell 88, 581–584 (1997).

    Article  CAS  Google Scholar 

  16. Ma, X., Ehrhardt, D.W. & Margolin, W. Colocalization of cell division proteins FtsZ and FtsA to cytoskeletal structures in living Escherichia coli cells by using green fluorescent protein. Proc. Natl. Acad. Sci. USA 993, 12998–13003 (1996).

    Article  Google Scholar 

  17. de Boer, P., Crossley, R. & Rothfield, L. The essential bacteria cell-division protein FtsZ is a GTPase. Nature 359, 254–256 (1992).

    Article  CAS  Google Scholar 

  18. Mukherjee, A. & Lutkenhaus, J. Guanine nucleotide-dependent assembly of FtsZ into filaments. J. Bacteriol. 176, 2754–2758 (1994).

    Article  CAS  Google Scholar 

  19. Erickson, H.P. & Stoffler, D. Protofilaments and rings, two conformations of the tubulin family conserved from bacterial FtsZ to α/β and γ tubulin. J. Cell Biol. 135, 5–8 (1996).

    Article  CAS  Google Scholar 

  20. Erickson, H.P., Taylor, D.W., Taylor, K.A. & Bramhill, D. Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologs of tubulin polymers. Proc. Natl. Acad. Sci. USA 93, 519–523 (1996).

    Article  CAS  Google Scholar 

  21. Löwe, J. & Amos, L.A. Crystal structure of the bacterial cell division protein FtsZ. Nature 391, 203–206 (1998).

    Article  Google Scholar 

  22. Gupta, R.S. & Soltys, B.J. Prokaryotic homolog of tubulin? Consideration of FtsZ and glyceraldehyde 3-phosphate dehydrogenase as probable candidates. Biochem. Mol. Bio. Int. 38, 1211–1221 (1996).

    CAS  Google Scholar 

  23. Rossmann, M.G., Moras, D. & Olsen, K.W. Chemical and biological evolution of a nucleotide-binding protein. Nature 250, 194–199 (1974).

    Article  CAS  Google Scholar 

  24. Chook, Y.M., Gray, J.V., Ke, H. & Lipscomp, W.N. The monofunctional chorismate mutase from Bacillus subtilis: structure determination of chorismate mutase and its complexes with a transition state analog and prephenate, and implications on the mechanisms of enzymatic reaction. J. Mol. Biol. 240, 476–500 (1994).

    Article  CAS  Google Scholar 

  25. Caplow, M., Ruhlen, R.L. & Shanks, J. The free energy of hydrolysis of a microtubule-bound nudeotide triphosphate is near zero: all of the free energy for hydrolysis is stored in the microtubule lattice. J. Cell Biol. 127, 779–788 (1994).

    Article  CAS  Google Scholar 

  26. Woehlke, G., Ruby, A.K., Hart, C.L., Ly, B., Hom-Booher, N. & Vale, R.D. Microtubule interaction site of the kinesin motor. Cell 90, 207–216 (1997).

    Article  CAS  Google Scholar 

  27. Connolly, M.L. Analytical molecular surface calculation. J. Appl. Crystallogr. 16, 548–558 (1983).

    Article  CAS  Google Scholar 

  28. Sheriff, S. Some methods for examining the interactions between two molecules. Immunometh. 3, 191–196 (1993).

    Article  CAS  Google Scholar 

  29. Kim, H., Feil, I.K., Verlinde, C.L., Petra, P.H. & Hoi, W.G. Crystal structure of glycosomal glyceraldehyde-3-phosphate dehydrogenase from Leishmania mexicana: implications for structure-based drug design and new position for the inorganic phosphate binding site. Biochemistry 34, 14975–14986 (1995).

    Article  CAS  Google Scholar 

  30. Polekhina, G. et al. Helix unwinding in the effector region of elongation factor EF-Tu-GDP. Structure 4, 1141–1151 (1996).

    Article  CAS  Google Scholar 

  31. Scheffzek, K. et al. The Ras–RasGAP complex: structural basis for GTPase activation and its loss in oncogenic ras mutants. Science 277, 333–338 (1997).

    Article  CAS  Google Scholar 

  32. Dai, K., Mukherjee, A., Xu, Y. & Lutkenhaus, J. Mutations in FtsZ that confer resistance to SulA affect the interaction of FtsZ with GTP. J. Bacteriol. 175, 130–136 (1994).

    Article  Google Scholar 

  33. David-Pfeuty, T., Simon, C. & Pantaloni, D. Effect of antimitotic drugs on tubulin GTPase activity and self-assembly. J. Biol. Chem. 254, 11696–11702 (1979).

    CAS  PubMed  Google Scholar 

  34. Melki, R., Fievez, S. & Carlier, M.-F. Continuous monitoring of P; release following nudeotide hydrolysis in actin or tubulin assembly using 2-amino-6-mercapto-7-methylpurine ribonucleoside and purine-nucleoside phosphorylase as an enzyme-linked assay. Biochemistry 35, 12038–12045 (1996).

    Article  CAS  Google Scholar 

  35. Erickson, H.P. Atomic structures of tubulin and FtsZ. Trends Cell Biol. 8, 133–137 (1998).

    Article  CAS  Google Scholar 

  36. Coleman, D.E. et al. Structures of active conformations of Giα1 and the mechanism of GTP hydrolysis. Science 265, 1405–1412 (1997).

    Article  Google Scholar 

  37. Lambright, D.G., Noel, J.P., Hamm, H.E. & Sigler, P.B. Structural determinants for activation of the α-subunit of a heterotrimeric G protein. Nature 369, 621–628 (1997).

    Article  Google Scholar 

  38. Kraulis, P.J. Molscript—a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  39. Merrit, E.A. & Murphy, M.E.P. Raster3D version 2.0 - a program for photorealistic molecular graphics. Acta Crystallogr. D 50, 869–873 (1994).

    Article  Google Scholar 

  40. Krauss, E. et al. Complete amino acid sequence of β-tubulin from porcine brain. Proc. Natl. Acad. Sci. USA 78, 4156–4160 (1981).

    Article  Google Scholar 

  41. Bull, C.J. et al. Complete genome sequence of the methanogenic archaeon Methanococcusjannaschii. Science 273, 1058–1073 (1996).

    Article  Google Scholar 

  42. Barton, G.J. Alscript—a tool to format multiple sequence alignments. Protein Engng. 6, 37–40 (1993).

    Article  CAS  Google Scholar 

  43. Nicholls, A. GRASP: Graphical representation and analysis of surface properties (Columbia University, New York; 1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Nogales.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nogales, E., Downing, K., Amos, L. et al. Tubulin and FtsZ form a distinct family of GTPases. Nat Struct Mol Biol 5, 451–458 (1998). https://doi.org/10.1038/nsb0698-451

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0698-451

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing