Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The crystal structure of Dps, a ferritin homolog that binds and protects DNA

Abstract

The crystal structure of Dps, a DNA-binding protein from starved E. coli that protects DMA from oxidative damage, has been solved at 1.6 Å resolution. The Dps monomer has essentially the same fold as ferritin, which forms a 24-mer with 432 symmetry, a hollow core and pores at the three-fold axes. Dps forms a dodecamer with 23 (tetrahedral) point group symmetry which also has a hollow core and pores at the three-folds. The structure suggests a novel DNA-binding motif and a mechanism for DNA protection based on the sequestration of Fe ions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Farr, S.B. & Kogoma, T. Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol. Rev. 55 561–585 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Almirón, M., Link, A.J., Furlong, D. & Kolter, R. A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. Genes Dev. 6 2646–2654 (1992).

    Article  PubMed  Google Scholar 

  3. Lomovskaya, O.L., Kidwell, J.P. & Matin, A. Characterization of the σ38-dependent expression of a core Escherichia coli starvation gene, pexB. J. Bacteriol. 176 3928–3935 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Martinez, A. & Kolter, R. Protection of DMA during oxidative stress by the nonspecific DNA-binding protein Dps. J. Bacteriol. 179 5188–5194 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Altuvia, S., Almirón, M., Huisman, G., Kolter, R. & Storz, G. The dps promoter is activated by OxyR during growth and by IMF and σs during stationary phase. Mol. Microbiol. 13 265–272 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Schmid, M.B. More than just ‘histone-like’ proteins. Cell 63 451–453 (1990).

    Article  CAS  PubMed  Google Scholar 

  7. Peña, M.O. & Bullerjahn, G.S., DpsA protein of Synechococcus sp. strain PCC7942 is a DNA-binding hemoprotein. J. Biol. Chem. 270 22478–22482 (1995).

    Article  PubMed  Google Scholar 

  8. Chen, L. and Helmann, J.D. Bacillus subtilis MrgA is a Dps (PexB) homologue: evidence for metalloregulation of an oxidative stress gene. Mol. Microbiol. 18 295–300 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Bozzi, M. et al. A novel non-heme iron-binding ferritin related to the DNA-binding proteins of the Dps family in Lysteria innocua. J. Biol. Chem. 272 3259–3265 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Brentiens, R.J., Ketterer, M., Apicella, M.A. & Spinola, S.M. Fine tangled pili expressed by Haemophilus ducreyi are a novel class of pili. J. Bacterol. 178 808–816 (1996).

    Article  Google Scholar 

  11. Pfiefer, O., Pelletier, I., Altenbuchner, J. & Van Pee, K.-H. Molecular cloning and sequencing of a non-haem bromoperoxidase gene from Streptomyces aureofaciens. J. Gen. Microbiol. 138 1123–1131 (1992).

    Article  Google Scholar 

  12. Evans, D.J., Evans, D.G., Lampert, H.C. & Nahano, H. Identification of four new prokaryotic bacterioferritins, from Helicobacter pylori, Anabaena variabilis, Bacillus subtilis and Treponema pallidum, by analysis of gene sequences. Gene 153 123–127 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Fehniger, T.E., Radolf, J.D. & Lovett, M.A. Properties of an ordered ring structure formed by recombinant Treponema pallidum surface antigen 4D. J. Bacteriol. 165 732–739 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sato, N. Hypothetical 20.2K protein from Anabeana variabilis. PIR accession No. JUO384 (1991).

  15. Harrison, P.M. & Arosio, P. The ferritins: molecular properties, iron storage function and cellular regulation. Biochim. Biophys. Act. 1275 161–203 (1996).

    Article  Google Scholar 

  16. Banyard, S.H., Stammer, D.K. & Harrison, P.M. Electron density map of apoferritin at 2.8 Å resolution. Nature 271 282–284 (1978).

    Article  CAS  PubMed  Google Scholar 

  17. Trikha, J. et al. Crystallization and structural analysis of bullfrog red-cell L-subunit ferritins. Proteins 18 107–118 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Lawson, D.M. et al. Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts. Nature 349 541–544 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Frolow, F., Kalb (Gilboa), A.J. & Yariv, J. Structure of a unique twofold symmetric haem-binding site. Nature Struct. Biol. 453–460 (1994).

  20. Le Brun, N.E. et al. Identification of the feroxidase center of Escherichia coli bacterioferritin. Biochem. J. 312 385–392 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nichols, A. and Honig, B. A rapid finite difference algorithm, utilizing successive over-relaxation to solve the Poisson-Boltzmann equation. J. Comput. Chem. 12 435–445 (1991).

    Article  Google Scholar 

  22. Nichols, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from interfacial and thermodynamic properties of hydrocarbons. Proteins 11 281–296 (1991).

    Article  Google Scholar 

  23. Thompson, J.D., Higgins, D.G. & Gibson, T.J. ClustaIW: Improving the sensitivity of progressive multiple alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22 4673–4680 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rice, P.A., Yang, S.-W., Mizuuchi, K. Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn. Cell 87 1295–1306 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Shindo, H. et al. Solution structure of the DNA-binding domain of a nucleoid-associated protein, HN-S, from Escherichia coli. FEBS Lett. 360 125–131 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Tanaka, I., Appelt, K., Dijk, J., White, S.W. & Wilson, K.S. 3 Å resolution structure of a protein with histone-like properties in prokaryotes. Nature 310 376–381 (1984).

    Article  CAS  PubMed  Google Scholar 

  27. Kostrewa, D. et al. Three-dimensional structure of the E. coli DNA-binding protein FIS. Nature 349 178–180 (1992).

    Article  Google Scholar 

  28. Yuan, H.S. et al. The molecular structure of wild-type Fis protein, relationship between mutational changes and recombinatorial enhancer function or DNA binding. Proc. Nat. Acad. Sci. USA 88 9558–9562 (1992).

    Article  Google Scholar 

  29. Van Duyne, G.D., Standaert, R.F., Karplus, P.A., Schreiber, S.L. & Clardy, J. Atomic structures of of the human immunophilin FKBP-12 complexes with FK-506 and rapamycin. J. Mol. Biol. 229 105–124 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Ottwinowski, Z. and Minor, W. Processing of X-ray diffraction data collected in ocsillation mode. Meth. Enz. 276 307–326 (1997).

    Article  Google Scholar 

  31. Collaborative computational project no. 4 The CCP4 suite: Programs for protein crystallography. Acta Crystallogr. D 50 760–763 (1994).

  32. Rould, M.A. Screening for heavy-atom derivatives and obtaining accurate isomorphous differences. Meth. Enz. 276 461–472 (1997).

    Article  CAS  Google Scholar 

  33. Bricogne, G. Geometric sources of redundancy in intensity data and their use in phase determination. Acta Crystallogr. A30 395–495 (1974).

    Article  Google Scholar 

  34. Filman, D.J., Wien, M.W., Cunningham, J.A., Bergelson, J.M. & Hogle, J.M. The structure determination of echovirus I. Acta Crystallogr., in the press (1998).

  35. Jones, A.T. Interactive computer graphics: FRODO. Meth. Enz. 115 157–171 (1985).

    Article  CAS  Google Scholar 

  36. Jones, A.T., Zou, Y-J., Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A42 140–149 (1994).

    Google Scholar 

  37. Jacobson, D.H., Hogle, J.M. & Filman, D.J. A pseudo-cell based approach to efficient crystallographic refinement of viruses. Acta Crystallogr. D 52 693–711 (1996).

    CAS  Google Scholar 

  38. Brunger, A.T. X-PLOR, Version 3.1 A system for X-ray crystallography and NMR. (Yale University Press, New Haven, Connecticut; 1992).

  39. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233 123–138 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. deMare, F., Kurtz, D.M. Jr., Norland, P. The structure of Desulfovibrio vulgaris rubrerythrin reveals a unique combinations of rubredoxin-like FeS4 and ferritin-like diiron domains. Nature Struct. Biol. 3 539–546 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grant, R., Filman, D., Finkel, S. et al. The crystal structure of Dps, a ferritin homolog that binds and protects DNA. Nat Struct Mol Biol 5, 294–303 (1998). https://doi.org/10.1038/nsb0498-294

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0498-294

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing