Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of horseradish peroxidase C at 2.15 Å resolution

Abstract

The crystal structure of horseradish peroxidase isozyme C (HRPC) has been solved to 2.15 Å resolution. An important feature unique to the class III peroxidases is a long insertion, 34 residues in HRPC, between helices F and G. This region, which defines part of the substrate access channel, is not present in the core conserved fold typical of peroxidases from classes I and II. Comparison of HRPC and peanut peroxidase (PNP), the only other class III (higher plant) peroxidase for which an X-ray structure has been completed, reveals that the structure in this region is highly variable even within class III. For peroxidases of the HRPC type, characterized by a larger FG insertion (seven residues relative to PNP) and a shorter F′ helix, we have identified the key residue involved in direct interactions with aromatic donor molecules. HRPC is unique in having a ring of three peripheral Phe residues, 142, 68 and 179. These guard the entrance to the exposed haem edge. We predict that this aromatic region is important for the ability of HRPC to bind aromatic substrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dunford, H.B. Horseradish peroxidase: Structure and Kinetic Properties. In Peroxidases in Chemistry and Biology Vol. 2 (eds Everse, I., Everse, K.E. & Grisham, M. B.) 1–24 (CRC Press, Boca Raton; 1991).

    Google Scholar 

  2. Welinder, K.G. Plant peroxidases: Structure-function relationships. In Plant Peroxidases 1980–1990. Topics and detailed literature on molecular, biochemical and physiological aspects. (eds Penel, C., Gaspar, T. & Greppin H.) 1–24 (University of Geneva, Switzerland; 1992).

    Google Scholar 

  3. Chance, B. The kinetics of the enzyme-substrate compound of peroxidase. J. Biol. Chem. 151, 553–577 (1943).

    CAS  Google Scholar 

  4. Poulos, T.L. & Kraut, J. The stereochemistry of peroxidase catalysis J. Biol. Chem. 255, 8199–8205 (1980).

    CAS  PubMed  Google Scholar 

  5. Erman, J.E. et al. Histidine 52 is a critical residue for rapid formation of cytochrome c peroxidase compound I. Biochemistry 32, 9798–9806 (1993).

    Article  CAS  Google Scholar 

  6. Vitello, L.B., Erman, J.E., Miller, M.A., Wang, J. & Kraut, J. Effect of Arginine-48 replacement on the reactions between cytochrome c peroxidase and hydrogen peroxide. Biochemistry 32, 9807–9818 (1993).

    Article  CAS  Google Scholar 

  7. Rodriguez-Lopez, J.N., Smith, A.T. & Thorneley, R.N.F. Recombinant Horseradish Peroxidase Isoenzyme C: The Effect of Distal Haem Cavity Mutations (His 42→Leu and Arg 38→Leu) on Compound I Formation and Substrate Binding. J. Biol. Inorg. Chem. 1, 136–142 (1996).

    Article  CAS  Google Scholar 

  8. Rodriguez-Lopez, J.N., Smith, A.T. & Thorneley, R.N.F. Role of Arg-38 in Horseradish peroxidase. A critical residue for substrate binding and catalysis. J. Biol. Chem. 271, 4023–4030 (1996).

    Article  CAS  Google Scholar 

  9. Candeias, L.P., Folkes, L.P., Porssa, M., Parrick, J. & Wardman, P. Rates of reaction of Indoleacetic acids with horseradish peroxidase compound I and their dependence on redox potentials. Biochemistry 35, 102–108 (1996).

    Article  CAS  Google Scholar 

  10. Sakurada, J., Sekiguchi, R., Sato, K. & Hosoya, T. Kinetic and molecular orbital studies on the rate of oxidation of monosubstituted phenols and anilines by horseradish peroxidase compound I. Biochemistry 29, 4093–4098 (1990).

    Article  CAS  Google Scholar 

  11. Veitch, N.C. & Williams, R.J.P. Two dimensional 1H-NMR studies of horseradish peroxidase C and its interaction with indole-3-propionic acid. Eur. J. Biochem. 189, 351–362 (1990).

    Article  CAS  Google Scholar 

  12. Veitch, N.C. & Williams, R.J.P. Two dimensional proton nuclear magnetic resonance studies of plant peroxidase interactions with aromatic donor molecules. In Biochemical, molecular and physiological aspects of plant peroxidases (eds Lobarzewski, J., Greppin, H., Penel, C. & Gaspar, T.) 99–109 (University of Geneva, Switzerland; 1991).

    Google Scholar 

  13. Sakurada, J., Takahashi, S. & Hosoya, T. Nuclear Magnetic Resonance Studies on the Spatial Relationship of Aromatic Donor Molecules to the Heme Iron of Horseradish Peroxidase. J. Biol. Chem. 261, 9657–9662 (1986).

    CAS  PubMed  Google Scholar 

  14. Veitch, N.C., Williams, R.J.P., Bone, N.M., Burke, J.F. & Smith, A.T. Eur. J. Biochem. 233, 650–658 (1995).

    Article  CAS  Google Scholar 

  15. Veitch, N.C. & Williams, R.J.P. The use of methylsubstituted benzhydroxamic acids as structural probes of peroxidase substrate binding. Eur. J. Biochem. 229, 629–40 (1995).

    Article  CAS  Google Scholar 

  16. Ator, M.A. & Ortiz de Montellano, P.R. Protein control of prosthetic heme reactivity. J.Biol. Chem. 262, 1542–1551 (1987).

    CAS  PubMed  Google Scholar 

  17. Ortiz de Montellano, P.R. Catalytic sites of hemeprotein peroxidases. Annu. Rev. Pharmacol. Toxicol. 32, 89–107 (1992).

    Article  CAS  Google Scholar 

  18. Miller, V.P., DePillis, G.D., Ferrer, J.C., Mauk, A.G. & Ortiz de Montellano, P.R. Monooxygenase Activity of Cytochrome c Peroxidase. J. Biol. Chem. 267, 8936–8942 (1992).

    CAS  PubMed  Google Scholar 

  19. Smith, A.T. et al. Expression of a synthetic gene for horseradish peroxidase C in Escherichia coll and folding and activation of the recombinant enzyme with Ca2+ and heme. J. Biol. Chem. 265, 13335–13343 (1990).

    CAS  PubMed  Google Scholar 

  20. Hartmann, C. & Ortiz de Montellano, P.R. Baculovirus expression and characterization of catalytically active horseradish peroxidase. Arch. Biochem. Biophys. 297, 61–72 (1992).

    Article  CAS  Google Scholar 

  21. Newmyer, S.L. & Ortiz de Montellano, P.R. Horseradish peroxidase H42A, H42V and F41 A, mutants — histidine catalysis and control of substrate access to the heme iron. J. Biol. Chem. 270, 19430–19438 (1995).

    Article  CAS  Google Scholar 

  22. Newmyer, S.L. & Ortiz de Montellano, P.R. Rescue of the catalytic activity of an H42A mutant of horseradish peroxidase by exogenous imidazoles. J. Biol. Chem. 271, 14891–14896 (1996).

    Article  CAS  Google Scholar 

  23. Newmyer, S.L., Sun, J., Loehr, T.M. & Ortiz de Montellano, P.R. Rescue of the horseradish peroxidase H170A mutant activity by imidazole - importance of proximal ligand tethering. Biochemistry 35, 12788–12795 (1996).

    Article  CAS  Google Scholar 

  24. Rodriguez-Lopez, J.N., Smith, A.T. & Thorneley, R.N. Effect of distal cavity mutations on the binding and activation of oxygen by ferrous horseradish peroxidase. J. Biol. Chem. 272, 389–395 (1997).

    Article  CAS  Google Scholar 

  25. Nagano, S., Tanaka, M., Ishimori, K., Watanabe, Y. & Morishima, I. Catalytic roles of the distal site asparagine-histidine couple in peroxidases. Biochemistry 35, 14251–14258 (1996).

    Article  CAS  Google Scholar 

  26. Howes, B.D., Rodriguez-Lopez, J.N., Smith, A.T. & Smulevich, G. Mutation of distal residues of horseradish peroxidase: influence on substrate binding and cavity properties. Biochemistry 36, 1532–1543 (1997).

    Article  CAS  Google Scholar 

  27. Zhao, D., Gilfoyle, D.J., Smith, A.T. & Loew, G. Refinement of 3D models of Horeseradish peroxidase: Predictions of 2D NMR assignments and substrate binding sites. Prot. Struc. Func. Gen. 26, 204–216 (1996).

    Article  CAS  Google Scholar 

  28. Schuller, D.J., Ban, N., van Huystee, R.B., McPherson, A. & Poulos, T.L. The crystal structure of peanut peroxidase. Structure 4, 311–321 (1996).

    Article  CAS  Google Scholar 

  29. Simon, P. et al. The peroxidase gene family of Arabidopsis Thaliana. In Plant Peroxidases: Biochemistry and Physiology (eds Obinger, C. et al.) 179–183 (University of Geneva, Switzerland; 1996).

    Google Scholar 

  30. Poulos, T.L., et al., & Kraut, J. The structure of cytochrome C at 2.5 Å resolution. J. Biol. Chem. 255, 575–580 (1980).

    CAS  PubMed  Google Scholar 

  31. Patterson, W.R. & Poulos, T.L. Crystal structure of recombinant pea cytosolic ascorbate peroxidase. Biochemistry 34, 4331–4341 (1995).

    Article  CAS  Google Scholar 

  32. Kunishima, N. et al., & Amachi, T. Crystal structure of the fungal peroxidase from Arthromyces ramocus at 1.9 Å resolution. J. Mol. Biol. 235, 331–344 (1994).

    Article  CAS  Google Scholar 

  33. Poulos, T.L., Edwards, S.L., Wariishi, H. & Gold, M.H. Crystallographic refinement of lignin peroxidase at 2 Å. J. Biol. Chem. 268, 4429–4440 (1993).

    CAS  PubMed  Google Scholar 

  34. Piontek, K., Glumoff, T. & Winterhalter, K. Low pH crystal structure of glycosylated lignin peroxidase from Phanerocaete chrysosporium at 2.06 Å resolution. FEBs Lett. 315, 119–124 (1993).

    Article  CAS  Google Scholar 

  35. Smith, A.T., Du, P. & Loew, G.H. Homology modeling of horseradish peroxidase. In Nuclear magnetic resonance of paramagnetic macromolecules (ed. La Mar, G.N.) 75–93 (Kluwer Academic Publishers, Dordrecht, Netherlands; 1994).

    Google Scholar 

  36. Jones, A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these maps. Acta Crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  37. Welinder, K.G. Amino acid sequence studies of horseradish peroxidase. Eur. J. Biochem. 96, 483–502 (1979).

    Article  CAS  Google Scholar 

  38. Hiner, A.N. et al. comparative study of the inactivation of wild-type, recombinant and two mutant horseradish peroxidase isoenzymes C by hydrogen peroxide and m-chloroperoxybenzoic acid. Eur. J. Biochem. 234, 506–512 (1995).

    Article  CAS  Google Scholar 

  39. Fukuyama, K., Kunishima, N., Amada, F., Kubota, T. & Matsubara, H. Crystal structures of cyanide- and triiodide-bound forms of Arthromyces ramosus peroxidase at different pH values. J. Biol. Chem. 270, 21884–21892 (1995).

    Article  CAS  Google Scholar 

  40. Smulevich, G. et al. Characterization of recombinant horseradish peroxidase C and three site-directed mutants, F41V, F41W, and R38K, by resonance Raman spectroscopy. Biochemistry 33, 7398–407 (1994).

    Article  CAS  Google Scholar 

  41. Smulevich, G., English, A.M., Martini, A.R. & Marzocchi, M.P. Resonance Raman investigation of ferric ion in horseradish peroxidase and its aromatic donor complexes at room and low temperature. Biochemistry 30, 772–779 (1991).

    Article  CAS  Google Scholar 

  42. Pappa, H.S. & Cass, A.E. A step towards understanding the folding mechanism of horseradish peroxidase. Tryptophan fluorescence and circular dichroism equilibrium studies. Eur. J. Biochem. 212, 227–235 (1995).

    Article  Google Scholar 

  43. Shiro, Y., Kurono, M. & Morishima, I. Presence of endogenous calcium ion and its functional and structural regulation in horseradish peroxidase. J. Biol. Chem. 261, 9382–9390 (1986).

    CAS  PubMed  Google Scholar 

  44. Welinder, K.G. & Gajhede, M. Structure and Evolution of Peroxidases. Proceedings of : Plant Peroxidases Biochemistry and Physiology. III International Symposium July 10–14 (eds Welinder, K.G., Rasmussen, S.K., Penel, C. & Greppin, H.) 35–42 (University of Geneva, Elsinore, Denmark; 1993).

    Google Scholar 

  45. Veitch, N.C. et al. Structural studies by proton-NMR spectroscopy of plant peroxidase C, the wild-type recombinant protein from Escherichia coli and two protein variants, Phe41 Val and Arg38 Lys. Eur. J. Biochem. 207, 521–531 (1992).

    Article  CAS  Google Scholar 

  46. Choudhury, K. et al. Role of the proximal ligand in peroxidase catalysis. Crystallographic, kinetic, and spectral studies of cytochrome c peroxidase proximal ligand mutants. J. Biol. Chem. 269, 20239–20249 (1994).

    CAS  PubMed  Google Scholar 

  47. Mauro, J.M. et al. Tryptophan 191→phenylalanine, a proximal-side mutation in yeast cytochrome c peroxidase that strongly affects the kinetics of ferrocytochrome c oxidation. Biochemistry 27, 6243–6256 (1988).

    Article  CAS  Google Scholar 

  48. Sivaraja, M., Goodin, D.B., Smith, M. & Hoffman, B.M. Identification of Trp-191 as free radical site in CCP compound ES. Science 245, 738–740 (1989).

    Article  CAS  Google Scholar 

  49. Patterson, W.R., Poulos, T.L. & Goodin, D.B. Identification of a porphyrin-cation radical in ascorbate peroxidase compound I. Biochemistry 34, 4342–4345 (1995).

    Article  CAS  Google Scholar 

  50. Veitch, N.C., Gao, Y., Smith, A.T. & White, C.G. Identification of a critical phenyialanine residue in the horseradish peroxidase, Phe 179, by site directed mutagenesis and H-NMR: Implications for complex formation with aromatic donor molecules. Biochemistry (in press) (1997).

    Google Scholar 

  51. Kjalke, M. et al. Comparison of structure and activities of peroxidases from Coprinus cinereus, Coprinus macrorhizus and Arthromyces ramosus. Biochim. Biophys. Acta. 1120, 248–256 (1992).

    Article  CAS  Google Scholar 

  52. Braithwaite, A. Unit cell dimensions of crystalline horseradish peroxidase. J. Mol. Biol. 106, 229–230 (1976).

    Article  CAS  Google Scholar 

  53. Green, B.N. & Olivier, R.W.A. The study of intact proteins and glycoproteins by electrospray m.s. Biochem. Soc. Trans. 19, 929–935 (1991).

    Article  CAS  Google Scholar 

  54. Henriksen, A. et al. Preliminary X-ray Diffraction Studies of Recombinant Peroxidase Isoenzyme C. Acta. Crystallogr. D51, 121–123 (1995).

    CAS  Google Scholar 

  55. Otwinowski, Z. Oscillation data reduction program. In Proceedings of the CCP4 study weekend: Data collection and processing 29–30 January 1993 (eds Sawyer, I., Isaacs, N. & Bailey, S.) 56–62 (SERC Daresbury Laboratory, England; 1993).

    Google Scholar 

  56. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A50, 157–163 (1994).

    Article  CAS  Google Scholar 

  57. Matthews, B.W. Solvent content of proteins. J. Mol. Biol. 33, 491–497 (1968).

    Article  CAS  Google Scholar 

  58. CCP4, 1994 Collaborative Computing Project, number 4 The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994).

  59. Schuller, D.J. MAGICSQUASH: more versatile non-crystallographic averaging with multiple constraints. Acta Crystallogr. D52, 425–434 (1996).

    CAS  Google Scholar 

  60. Kleywegt, G.J. & Jones, T.A. Efficient rebuilding of protein structures. Acta. Crystallogr. D52, 829–841 (1996).

    CAS  Google Scholar 

  61. Brünger, A.T. X-PLOR Version 3.1. A system for X-ray Crystallography and NMR (Yale University Press, New Haven, Connecticut, USA; 1993).

  62. Engh, R.A. & Huber, R. Accurate bond and angle parameters for X-ray protein structure refinement. Acta. Crystallogr. A47, 392–400 (1991).

    Article  CAS  Google Scholar 

  63. Barton, G.J. Protein multiple sequence alignment and flexible pattern matching. Meth. Enz. 183, 403–428 (1990).

    Article  CAS  Google Scholar 

  64. Evans, S.V. SETOR: Hardware-lighted three dimensional solid model representations of macromolecules. J. Mol. Graphics 11, 134–138 (1993).

    Article  CAS  Google Scholar 

  65. Russell, R.B. & Barton, G.J. Multiple protein sequence alignment from tertiary structure comparison. Proteins 14, 309–323 (1992).

    Article  CAS  Google Scholar 

  66. Barton, G.J. ALSCRIPT: a tool to format multiple sequence alignments. Protein Eng. 6, 37–40 (1993).

    Article  CAS  Google Scholar 

  67. Humphrey, W., Dalke, A. & Schulten, K. VMD - Visual Molecular Dynamics. J. Molec. Graphics 14, 33–38 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael Gajhede or Andrew T. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gajhede, M., Schuller, D., Henriksen, A. et al. Crystal structure of horseradish peroxidase C at 2.15 Å resolution. Nat Struct Mol Biol 4, 1032–1038 (1997). https://doi.org/10.1038/nsb1297-1032

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1297-1032

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing