Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of turnip yellow mosaic virus

Abstract

The structure of turnip yellow mosaic virus (TYMV) has been solved to 3.2 Å resolution and an R-value of 18.7%. The structure is consistent with models based on low resolution X-ray and electron microscopy studies, with pentameric and hexameric protein aggregates protruding from the surface and forming deep valleys at the quasi three-fold axes. The N-terminal 26 residues of the A-subunit are disordered, while those of the B- and C-subunits are seen to interact around the interior of the quasi six-fold cluster where they form an annulus. The three histidine residues of each protein subunit are located in the interior and accessible for interaction with the RNA genome. The appearance of the interior surface of the virus capsid, along with buried surface area calculations, suggest that a pentameric unit is lost during decapsidation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hirth, L. & Givord, L. Tymoviruses. In The Plant Viruses (ed. R. Koenig) 3, 163–212 (Plenum, New York, 1988).

    Google Scholar 

  2. Morch, M.D., Boyer, J.C. & Haenni, A.L. Overlapping open reading frames revealed by complete nucleotide sequencing of turnip yellow mosaic virus genomic RNA. Nuc. Acids Res. 16, 6157–6173 (1988).

    CAS  Google Scholar 

  3. Pinck, M., Yot, P., Chapeville, F. & Duranton, H.M. Enzymatic binding of valine to the 3′ end of TYMV-RNA Nature 226, 954–956 (1970).

    CAS  PubMed  Google Scholar 

  4. Haenni, A.L., Prochiantz, A., Bernard, O. & Chapeville, F. TYMV valyl-RNA as an amino-acid donor in protein biosynthesis. Nature new Biol. 241, 166–168 (1973).

    CAS  PubMed  Google Scholar 

  5. Giége, R., Florentz, C. & Dreher, T.W. The TYMV tRNA-like structure. Biochimie 75, 569–582 (1993).

    PubMed  PubMed Central  Google Scholar 

  6. Matthews, R.E.F. Plant Virology 231–237 (Academic Press, Inc., New York; 1991).

    Google Scholar 

  7. Mutombo, K., Michels, B., Ott, H., Cerf, R. & Witz, J. The thermal stability and decapsidation mechanism of tymoviruses: A differential calorimetric study. Biochimie 75, 667–674 (1993).

    CAS  PubMed  Google Scholar 

  8. Klug, A., Longley, W. & Leberman, R. Arrangement of protein subunits and the distribution of nucleic acid in turnip yellow mosiac virus. I. X-ray diffraction studies. J. mol. Biol. 15, 315–343 (1966).

    CAS  PubMed  Google Scholar 

  9. Finch, J.T. & Klug, A. Arrangement of protein subunits and the distribution of nucleic acid in turnip yellow mosaic virus. II. Electron microscopic studies. J. Mol. Biol. 15, 344–64 (1966).

    CAS  PubMed  Google Scholar 

  10. Jacrot, B., Chauvin, C. & Witz, J. Comparative neutron small-angle scattering study of small spherical RNA Viruses. Nature 266, 417–421 (1977).

    CAS  PubMed  Google Scholar 

  11. Rubio-Huertos, M., Vela, A. & Lopez-Abella, D. Crystalline arrays of spherical particles in turnip yellow mosaic virus-infected cells. Virology 32, 438–444 (1967).

    CAS  PubMed  Google Scholar 

  12. Markham, R. & Smith, K.M. Studies on the virus of turnip yellow mosaic. Parasitology 39, 330–343 (1949).

    CAS  PubMed  Google Scholar 

  13. Chapman, M.S. & Rossmann, M.G. Comparison of surface properties of picornaviruses: Strategies for hiding the receptor site from immune surveillance. Virology 195, 745–756 (1993).

    CAS  PubMed  Google Scholar 

  14. Mellema, J.E. & Amos, L.A. Three-dimensional image reconstruction of turnip yellow mosaic virus. J. Mol. Biol. 72, 819–822 (1972).

    CAS  PubMed  Google Scholar 

  15. Speir, J.A., Munshi, S., Wang, G., Baker, T.S. & Johnson, J.E. Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. Structure 3, 63–78 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sheriff, S., Hendrickson, W.A. & Smith, J.L. Structure of myohemerythrin in the azidomet state at 1.7/1.3 Å resolution. J. Mol. Biol. 197, 273–296 (1987).

    CAS  PubMed  Google Scholar 

  17. Kaper, J.M. The Chemical basis of virus structure, dissociation, and assembly (North-Holland Publishing Company, Amsterdam; 1975).

    Google Scholar 

  18. Peter, R., Stehelin, D., Reinbolt, J., Collot, D. & Duranton, H. Primary structure of turnip yellow mosaic virus coat protein. Virology 49, 615–617 (1972).

    CAS  PubMed  Google Scholar 

  19. Chelvanayagam, G., Heringa, J. & Argos, P. Anatomy and evolution of proteins displaying the viral capsid jellyroll topology. J. Mol. Biol. 228 220–242 (1992).

    CAS  PubMed  Google Scholar 

  20. Nicholls, A., Sharp, K. & Honig, B. Protein folding and association—insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    CAS  PubMed  Google Scholar 

  21. Witz, J., Timmins, P.A. & Adrian, M. Organization of turnip yellow mosaic virus investigated by neutron small angle scattering at 80 K: An intermediate state preceding decapsidation of the virion? Proteins 17, 223–231 (1993).

    CAS  PubMed  Google Scholar 

  22. Pleij, C.W., Eecen, H.G., Bosch, L. & Mandel, M. The formation of fast-sedimenting turnip yellow mosaic virus RNA: Structural rearrangement inside the capsid. Virology 76, 781–786 (1977).

    CAS  PubMed  Google Scholar 

  23. Virudachalam, R., Low, P.S., Argos, P. & Markley, J.L. Turnip yellow mosaic virus and its capsid have thermal stabilities with opposite pH dependence: Studies by differential scanning calorimetry and 31P nuclear magnetic resonance spectroscopy. Virology 146, 213–220 (1985).

    CAS  PubMed  Google Scholar 

  24. Rohozinski, J. & Hancock, J.M. Do light-induced pH changes within the chloroplast drive turnip yellow mosaic virus assembly? J. Gen. Virol. 77, 163–165 (1996).

    CAS  PubMed  Google Scholar 

  25. Matthews, R.E.F. & Witz, J. Uncoating of turnip yellow mosaic virus RNA in vivo. Virology 144, 318–327 (1985).

    CAS  PubMed  Google Scholar 

  26. Adrian, M., Timmins, P.A. & Witz, J. In vitro decapsidation of turnip yellow mosaic virus investigated by cryo-electron microscopy: a model for the decapsidation of a small isometric virus. J. Gen. Virol. 73, 2079–2083 (1992).

    CAS  PubMed  Google Scholar 

  27. Keeling, J. & Matthews, R.E.F. Mechanism for release of RNA from turnip yellow mosaic virus at high pH. Virology 119, 214–218 (1982).

    CAS  PubMed  Google Scholar 

  28. Katouzian-Safadi, M. & Berthet-Colominas, C. Evidence for the presence of a hole in the capsid of turnip yellow mosaic virus after RNA release by freezing and thawing. Eur. J. Biochem. 137, 47–55 (1983).

    CAS  PubMed  Google Scholar 

  29. Quesniaux, V., Jaegle, M. & Van Regenmortel, M.H.V. Immunochemical studies of turnip yellow mosaic virus III. Localization of two viral epitopes in residues 57–64 and 183–189 of the coat protein. Bioch. et Bioph. Acta 743, 226–231 (1983).

    CAS  Google Scholar 

  30. Quesniaux, V., Briand, J.P. & Van Regenmortel, M.H.V. Immunochemical studies of turnip yellow mosaic virus—II. Localization of a viral epitope in the N-terminal residues of the coat protein. Molec. Immun. 20, 179–185 (1983).

    CAS  PubMed  Google Scholar 

  31. Roivainen, M., Piirainen, L., Rysä, T., Närvänen, A. & Hovi, T. An immunodominant N-terminal region of VP1 protein of poliovirion that is buried in crystal structure can be exposed in solution. Virology 195, 762–765 (1993).

    CAS  PubMed  Google Scholar 

  32. Yafal, A.G., Kaplan, G., Racaniello, V.R. & Hogle, J.M. Characterization of poliovirus conformational alteration mediated by soluble cell receptors. Virology 197, 501–515 (1993).

    Google Scholar 

  33. Cheng, R.H. et al. Functional implications of quasi-equivalence in a T=3 icosahedral animal virus established by cryo-electron microscopy and X-ray crystallography. Structure 2, 271–282 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Tsao, J. et al. & Parrish, C.R. Three dimensional structure of canine parvovirus and its functional implications. Science 251, 1456–1464 (1991).

    CAS  PubMed  Google Scholar 

  35. Langeveld, J.P.M. et al. B-cell epitopes of canine parvovirus: Distribution on the primary structure and exposure on the viral surface. J. Virol. 68, 4506–4513 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ehresmann, B., Briand, J.P., Reinbolt, J. & Witz, J. Identification of binding sites of turnip yellow mosaic virus protein and RNA induced in situ. Eur. J. Biochem. 108, 123–129 (1980).

    CAS  PubMed  Google Scholar 

  37. Chen, Z. et al. & Johnson, J.E. Protein-RNA interactions in an icosahedral virus at 3.0 Å resolution. Science 245, 154–159 (1989).

    CAS  PubMed  Google Scholar 

  38. Larson, S.B. et al. Double helical RNA in satellite tobacco mosaic virus. Nature 361, 179–182 (1993).

    CAS  PubMed  Google Scholar 

  39. Fisher, A.J. & Johnson, J.E. Ordered duplex RNA controls capsid architecture in an icosahedral animal virus. Nature 361, 176–179 (1993).

    CAS  PubMed  Google Scholar 

  40. Wery, J.P., Reddy, V.S., Hosur, M.V. & Johnson, J.E. The refined three-dimensional structure of an insect virus at 2.8 Å resolution. J. mol. Biol. 235, 565–586 (1994).

    CAS  PubMed  Google Scholar 

  41. Bottcher, B. & Crowther, R.A. Difference imaging reveals ordered regions of RNA in turnip yellow mosaic virus. Structure 4, 387–394 (1996).

    CAS  PubMed  Google Scholar 

  42. Hanna, M. & Szostak, J.W. Suppression of mutations in the core of the Tetrahymena ribozyme by spermidine, ethanol and by substrate stabilization. Nuc. Acids Res. 22, 5326–5331 (1994).

    CAS  Google Scholar 

  43. Canady, M.A., Day, J. & McPherson, A. Preliminary X-ray diffraction analysis of crystals of turnip yellow mosaic virus (TYMV). Proteins 21, 78–81 (1995).

    CAS  PubMed  Google Scholar 

  44. McPherson, A. The growth and preliminary investigation of protein and nucleic acid crystals for X-ray diffraction. In Methods of Biochemical analysis (ed. D. Glick) 249–345 (John Wiley & Sons, New York, 1976).

    Google Scholar 

  45. Otwinowski, Z. . Oscillation Data Reduction program. In Proceedings of the CCP4 Study Weekend: Data Collection and Processing, 29–30 January, (L. Sawyer, N. Isaacs & S. Bailey, compl.) 56–62 (SERC Daresbury Laboratory, England, 1993).

    Google Scholar 

  46. Minor, W. XDISPLAYF Program (Purdue University, West Lafayette, Indiana, 1993).

    Google Scholar 

  47. Brünger, A.T. X-PLOR Version 3.1. A system for X-ray Crystallography and NMR (Yale University Press, New Haven, 1992).

    Google Scholar 

  48. Larson, S.B. et al. Three dimensional structure of satellite tobacco mosaic virus at 2.9 Å resolution. J. Mol. Biol. 21, 375–391 (1993).

    Google Scholar 

  49. Bricogne, G. Methods and programs for direct-space exploitation of geometrical redundancies. Acta Crystallogr. A 32, 832–846 (1976).

    Google Scholar 

  50. Furey, W. Abstract, American Crystallographic Association, Series 2 (18) 73 (1990).

  51. Jones, A.T. & Kjeldgaard, M. “O” Manual, version 5.4 (Uppsala University, Sweden and Aarhus University, Denmark, 1990).

    Google Scholar 

  52. Kraulis, P.J. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J. appl. Cryst. 24, 946–950 (1991).

    Google Scholar 

  53. Evans, S.V. SETOR: hardware lighted three-dimensional solid model representations of macromolecules. J. Molec. Graphics 11, 134–138 (1993).

    CAS  Google Scholar 

  54. Laskowski, R.A., Macarthur, M.W., Moss, D.S. & Thornton, J.M. Procheck—A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canady, M., Larson, S., Day, J. et al. Crystal structure of turnip yellow mosaic virus. Nat Struct Mol Biol 3, 771–781 (1996). https://doi.org/10.1038/nsb0996-771

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0996-771

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing