Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A novel mode of carbohydrate recognition in jacalin, a Moraceae plant lectin with a β-prism fold

Abstract

Jacalin, a tetrameric two-chain lectin (66,000 Mr) from jackfruit seeds, is highly specific for the tumour associated T-antigenic disaccharide. The crystal structure of jacalin with methyl-α-D-galactose reveals that each subunit has a three-fold symmetric β-prism fold made up of three four-stranded β-sheets. The lectin exhibits a novel carbohydrate-binding site involving the N terminus of the α-chain which is generated through a post-translational modification involving proteolysis, the first known instance where such a modification has been used to confer carbohydrate specificity. This new lectin fold may be characteristic of the Moraceae plant family. The structure provides an explanation for the relative affinities of the lectin for galactose derivatives and provides insights into the structural basis of its T-antigen specificity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kabir, S. & Daar, A.S. The composition and properties of jacalin, a lectin of diverse applications obtained from jackfruit (Artocarpus heterophyllus) seeds. Immunol. invest. 23, 167–188 (1994).

    Article  CAS  Google Scholar 

  2. Pineau, N., Aucouturier, P., Brugier, J.C. & Preud'homme, J. L Jacalin: a lectin mitogenic for human CD4 T lymphocytes. Clin. Exp. Immunol. 80, 420–425, (1990).

    Article  CAS  Google Scholar 

  3. Roque-Barreira, M.C. & Campos-IMeto, A. Jacalin: an IgA-binding lectin. J. immunol. 134, 1740–1743 (1985).

    CAS  PubMed  Google Scholar 

  4. Payne, N.R., Concepcion, N.F. & Anthony, B.F. Opsonic effect of jacalin and human immunoglobulin A on type II group B streptococci. Infection and immunity 58, 3663–3670 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Corbeau, P., Haran, M., Binz, H. & Devaux, C. Jaclin, A lectin with anti-HIV-1 properties, and HIV-1 gp120 envelope protein interact with distinct regions of the CD4 molecule. Mol. immunol. 31, 569–575 (1995).

    Article  Google Scholar 

  6. Mahanta, S.K., Sastry, M.V.K. & Surolia, A. Topography of the combining region of a Thomsen-Friedenreich-antigen-specific lectin jacalin (Artocarpus integrifolia agglutinin). Biochem. J. 265, 831–840 (1990).

    Article  CAS  Google Scholar 

  7. Banerjee, R. et al. Crystal structure of peanut lectin, a protein with an unusual quaternary structure. Proc. Natl. Acad. Sci. USA 91, 227–231 (1994).

    Article  CAS  Google Scholar 

  8. Springer, G.F., Desai, P.R., Murthy, M.S., Tegtmeyer, H. & Scanlon, E.F. Human carcinoma - associated precursor antigens of the blood group MN system and the hosts immune responses to them. Prog. Allergy 26, 42–96 (1979).

    CAS  PubMed  Google Scholar 

  9. Clausen, H., Stroud, M., Parker, J., Springer, G. & Hakomori, S.-I. Monoclonal antibodies directed to the blood group A associated structure, galactosyl-A. Specificity and relation to the Thomsen-Friedenreich antigen. Mol. Immunol. 25, 199–204 (1988).

    Article  CAS  Google Scholar 

  10. Rini, J.M. Lectin structure. Annu. Rev. Biophys. Biomol. Struct 24, 551–577 (1995).

    Article  CAS  Google Scholar 

  11. Drickamer, K. Multiplicity of lectin-carbohydrate interactions. Nature Struct. Biol. 2, 437–439 (1995).

    Article  CAS  Google Scholar 

  12. Mahanta, S.K., Sanker, S., Rao, N.V.S.A.V.P., Swamy, M.J. & Surolia, A. Primary structure of a Thomsen-Friedenreich-antigen-specific lectin, jacalin [Artocarpus integrifolia (jackfruit) agglutinin] Evidence for the presence of an internal repeat. Biochem. J. 284, 95–101 (1992).

    Article  CAS  Google Scholar 

  13. Ruffet, E., Paquet, N., Frutiger, S., Hughes, G.J. & Jaton, J-C. Structural and electron-microscopic studies of jacalin from jackfruit (Artocarpus integrifolia) show that this lectin is a 65 kDa tetramer. Biochem. J. 286, 131–134 (1992).

    Article  CAS  Google Scholar 

  14. Yang, H. & Czapla, T.H. Isolation and characterization of cDNA clones encoding jacalin isolectins. J. biol. Chem. 268, 5905–5910 (1993).

    CAS  PubMed  Google Scholar 

  15. Young, N.M., Johnston, R.A.Z. & Watson, D.C. The amino acid sequences of jacalin and Maclura pomifera agglutinin. FEBS Lett. 282, 382–384 (1991).

    Article  CAS  Google Scholar 

  16. Chothia, C. & Murzin, A.G. New folds for all-β proteins. Structure 1, 217–222 (1993)

    Article  CAS  Google Scholar 

  17. Rutenbur, E., Ready, M. & Robertus, J.D. Structure and evolution of ricin β-chain. Nature 326, 624–626 (1987).

    Article  Google Scholar 

  18. Lee, B. & Richards, F.M. The interpretation of protein structures: Estimation of static accessibility. J. Mol. Biol. 55, 379–400 (1971).

    Article  CAS  Google Scholar 

  19. Senear, D.F. & Teller, D.C. Thermodynamics of concanavalin A dimer-tetramer self association: sedimentation equilibrium studies. Biochemistry 20, 3076–3083 (1981).

    Article  CAS  Google Scholar 

  20. Decastel, H. et al. Effect of pH on oligomeric equilibrium and saccharide-binding properties of peanut agglutinin. Arch. Biochem. Biophys. 240, 811–819 (1985).

    Article  CAS  Google Scholar 

  21. Li, J., Carroll, J. and Ellar, D.J. Crystal structure of insecticidal δ-endotoxin from Bacillus thuringiensis at 2.5 Å resolution. Nature 353, 815–821 (1991).

    Article  CAS  Google Scholar 

  22. Shimizu, T., Vassylyev, D.G., Kido, S., Doi, Y. & Morikawa, K. Crystal structure of vitelline membrane outer layer protein I (VMO-I): a folding motif with homologous Greek key structures related by an internal three-foldI symmetry. EMBO J. 13, 1003–1010 (1994).

    Article  CAS  Google Scholar 

  23. Shimizu, T. & Morikawa, K. The β-prism: a new folding motif. Trends Biochem. Sci. 21, 3–6 (1996).

    Article  CAS  Google Scholar 

  24. Knight, P.J.K., Crickmore, N. & Ellar, D.J. The receptor for Bacillus thuringiensis Cry 1A (c) delta-endotoxin in the brush border membrane of the lepidopteran Manduca sexta in aminopeptidase N. Mol. Microbiol. 11, 429–436 (1994).

    Article  CAS  Google Scholar 

  25. Vyas, N.K. Atomic features of protein-carbohydrate interactions. Curr. Opin. Struct. Biol. 1, 732–740 (1991).

    Article  CAS  Google Scholar 

  26. Blow, D.M. & Steitz, T.A. X-ray diffraction studies of enzymes. Annu. Rev. Biochem. 39, 63–100 (1970).

    Article  CAS  Google Scholar 

  27. Banerjee, R. et al. Conformation, protein-carbohydrate interactions and a novel subunit association in the refined structure of peanut lectin-lactose complex. J. Mol. Biol. in the press.

  28. Kumar, S.G., Appukuttan, P.S. & Basu, D. α-D-galactose-specific lectin from jackfruit (Artocarpus integrifolia) seed. J. Biosci. 4, 257–261 (1982).

    Article  CAS  Google Scholar 

  29. Dhanaraj, V., Patanjali, S.R., Surolia, A. & Vijayan, M. Preparation and preliminary x-ray studies of two crystal forms of the anti-T lectin from jackfruit (Artocarpus integrifolia). J. Mol. Biol. 203, 1135–1136 (1988).

    Article  CAS  Google Scholar 

  30. Banerjee, R., Dhanaraj, V., Mahanta, S.K., Surolia, A. & Vijayan, M. Preparation and X-ray characterization of four new crystal forms of jacalin, a lectin from Artocarpus integrifolia. J. Mol. Biol. 221, 773–776 (1991).

    Article  CAS  Google Scholar 

  31. Main, P. et al. A system of computer programmes for the automatic solution of crystal structure from x-ray diffraction data, University of York, England and Louvain, Belgium (1984).

    Google Scholar 

  32. SERC Daresbury laboratory, Warrington, W A4 4AD, England. The CCP4 suite: Programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994).

  33. Wang, B.C. Resolution of phase ambiguity in macromolecular crystallography. Meth. Enzymol. 115, 90–112 (1985).

    Article  CAS  Google Scholar 

  34. Bricogne, G. Methods and programs for direct-space exploitation of geometric redundancies. Acta Crystallogr. A32, 832–847 (1976).

    Article  CAS  Google Scholar 

  35. Zhang, K.Y.G. SQUASH - Combining constraints for macromolecular phase refinement and extension. Acta Crystallogr. D49, 213–222 (1993).

    CAS  Google Scholar 

  36. Cowtan, K.D. & Main, P. Improvement of macromolecular electron-density maps by the simultaneous application of real and reciprocal space constraints. Acta Crystallogr. D49, 148–157 (1993).

    CAS  Google Scholar 

  37. Jones, T.A. A graphics model building and refinement system for macromolecules. J. Appl. Crystallogr. 11, 268–272 (1978).

    Article  CAS  Google Scholar 

  38. Richardson, J.S. The anatomy and taxonomy of protein structure. Adv. Prot. Chem. 34, 167–339 (1981).

    CAS  Google Scholar 

  39. Brünger, A.T., Kuriyan, J. & Karplus, M. Crystallographic R factor refinement by molecular dynamics. Science 235, 458–460 (1987).

    Article  Google Scholar 

  40. Engh, R.A. & Huber, R. Accurate bond and angle parameters for X-ray protein structure refinement. Acta Crystallogr. A47, 392–400 (1991).

    Article  CAS  Google Scholar 

  41. Brünger, A.T. Free R value: A novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475 (1992).

    Article  Google Scholar 

  42. Vijayan, M. in Computing in Crystallography ( Diamond, R., Ramaseshan, S. and Venkatesan, K. eds) 19.01–19.26 (Indian Academy of Sciences, Bangalore, 1980).

    Google Scholar 

  43. Bhat, T.N. & Cohen, G.H. OMIT MAP: An electron density map suitable for the examination of errors in a macromolecular model. J. Appl. Crystallogr. 17, 244–248 (1984).

    Article  CAS  Google Scholar 

  44. Kraulis, P. Molscript: A program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  45. Merrit, E.A. & Murphy, M.E.P. Raster 3D Version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr. D50, 869–873 (1994).

    Google Scholar 

  46. Carson, M. RIBBONS Manual, Version 2.0, University of Alabama at Birmingham, Alabama (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sankaranarayanan, R., Sekar, K., Banerjee, R. et al. A novel mode of carbohydrate recognition in jacalin, a Moraceae plant lectin with a β-prism fold. Nat Struct Mol Biol 3, 596–603 (1996). https://doi.org/10.1038/nsb0796-596

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0796-596

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing