Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Buried polar residues and structural specificity in the GCN4 leucine zipper

Abstract

A conserved asparagine (Asn 16) buried in the interface of the GCN4 leucine zipper selectively favours the parallel, dimeric, coiled-coil structure. To test if other polar residues confer oligomerization specificity, the structural effects of Gin and Lys substitutions for Asn 16 were characterized. Like the wild-type peptide, the Asn16Lys mutant formed exclusively dimers. In contrast. Gin 16, despite its chemical similarity to Asn, allowed the peptide to form both dimers and trimers. The Gin 16 side chain was accommodated by qualitatively different interactions in the dimer and trimer crystal structures. These findings demonstrate that the structural selectivity of polar residues results not only from the burial of polar atoms, but also depends on the complementarity of the side-chain stereochemistry with the surrounding structural environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. West, M.W. & Hecht, M.H. Binary patterning of polar and nonpolar amino acids in the sequences and structures of native proteins. Protein Sci. 4, 2032–2039 (1995).

    Article  CAS  Google Scholar 

  2. Bowie, J.U., Luthy, R. & Eisenberg, D. A method to identify protein sequences that fold into a known three-dimensional structure. Science 253, 164–170 (1991).

    Article  CAS  Google Scholar 

  3. Dill, K.A. et al. Principles of protein folding-A perspective from simple exact models. Protein Sci. 4, 561–602 (1995).

    Article  CAS  Google Scholar 

  4. Cordes, M.H.J., Davidson, A.R. & Sauer, R.T. Sequence space, folding and protein design. Curr. Opin. Struct. Biol. 6, 3–10 (1996).

    Article  CAS  Google Scholar 

  5. Desjarlais, J.R. & Handel, T.M. New strategies in protein design. Curr. Opin. Biotechnol. 6, 460–466 (1995).

    Article  CAS  Google Scholar 

  6. Kamtekar, S. & Hecht, M.H. The four-helix bundle: what determines a fold? FASEB J. 9, 1013–1022 (1995).

    Article  CAS  Google Scholar 

  7. Betz, S.F., Bryson, J.W. & DeGrado, W.F. Native-like and structurally characterized designed α-helical bundles. Curr. Opin. Struct. Biol. 5, 457–463 (1995).

    Article  CAS  Google Scholar 

  8. Harbury, P.B., Zhang, T., Kim, P.S. & Alber, T.A. A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine-zipper mutants. Science 262, 1401–1407 (1993).

    Article  CAS  Google Scholar 

  9. Cohen, C. & Parry, A.D. α-helical coiled coils and bundles: how to design an α-helical protein. Proteins 7, 1–15 (1990).

    Article  CAS  Google Scholar 

  10. Hodges, R.S., Sodek, J., Smillie, L.B. & Jurasek, L. Tropomyosin: amino acid sequence and coiled-coil structure. Cold Spring Harbor Symp. Quant. Biol. 37, 299–310 (1972).

    Article  Google Scholar 

  11. Conway, J.F. & Parry, D.A. Structural features in the heptad substructure and longer range repeats of two-stranded α-fibrous proteins. Int. J. Biol. Macromol. 12, 328–334 (1990).

    Article  CAS  Google Scholar 

  12. Conway, J.F. & Parry, D.A. Three-stranded α-fibrous proteins: the heptad repeat and its implications for structure. Int. J. Biol. Macromol. 13, 14–16 (1991).

    Article  CAS  Google Scholar 

  13. O'Shea, E.K., Klemm, J.D., Kim, P.S. & Alber, T. X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science 254, 539–544 (1991).

    Article  CAS  Google Scholar 

  14. Gonzalez, Jr., L., Plecs, J.J. & Alber, T. An engineered allosteric switch in leucine-zipper oligomerization. Nature Struct. Biol. 3, 510–515 (1996).

    Article  CAS  Google Scholar 

  15. Gonzalez, Jr., L., Brown, R.A., Richardson, D. & Alber, T. Crystal structures of a single coiled-coil peptide in two oligomeric states reveal the basis for structural polymorphism. Nature Struct. Biol. 3, 1002–1010 (1996).

    Article  CAS  Google Scholar 

  16. Potekhin, S.A., Medvedkin, V.N., Kashparov, I.A. & Venyaminov, S.U. Synthesis and properties of the peptide corresponding to the mutant form of the leucine zipper of the transcriptional activator GCN4 from yeast. Protein Eng. 7, 1097–1101 (1994).

    Article  CAS  Google Scholar 

  17. Glover, J.N.M. & Harrison, S.C. Crystal structure of the heterodimeric bZIP transcription factor c-Fos—c-Jun bound to DNA. Nature 373, 257–261 (1995).

    Article  CAS  Google Scholar 

  18. Junius, F.K. et al. Nuclear magnetic resonance characterization of the Jun leucine zipper domain: unusual properties of coiled-coil interfacial polar residues. Biochemistry 34, 6164–6174 (1995).

    Article  CAS  Google Scholar 

  19. Woolfson, D.N. & Alber, T. Predicting oligomerization states of coiled coils. Prot. Sci. 4, 1596–1607 (1995).

    Article  CAS  Google Scholar 

  20. Lumb, K.J. & Kim, P.S. A buried polar interaction imparts structural uniqueness in a designed heterodimeric coiled coil. Biochemistry 34, 8642–8648 (1995).

    Article  CAS  Google Scholar 

  21. Wendt, H., Berger, C., Baici, A., Thomas, R.M. & Bosshard, H.R. Kinetics of folding of leucine zipper domains. Biochemistry 34, 4097–4107 (1995).

    Article  CAS  Google Scholar 

  22. Anfinsen, C.B. Principles that govern the folding of protein chains. Science 181, 223–230 (1973).

    Article  CAS  Google Scholar 

  23. Carr, C.M. & Kim, P.S. A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell 73, 823–832 (1993).

    Article  CAS  Google Scholar 

  24. Bullough, P.A., Hughson, F.M., Skehel, J.J. & Wiley, D.C. Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 371, 37–43 (1994).

    Article  CAS  Google Scholar 

  25. Doi, T. et al., & Kodama, T. The histidine interruption of an α-helical coiled coil allosterically mediates a pH-dependent ligand dissociation from macrophage scavenger receptors. J. Biol. Chem. 269, 25598–25604 (1994).

    CAS  PubMed  Google Scholar 

  26. Rabindran, S.K., Haroun, R.I., Clos, J., Wisniewski, J. & Wu, C. Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. Science 259, 230–234 (1993).

    Article  CAS  Google Scholar 

  27. Sheldon, L.A. & Kingston, R.E. Hydrophobic coiled-coil domains regulate the subcellular localization of human heat shock factor 2. Genes & Dev. 7, 1549–1558 (1993).

    Article  CAS  Google Scholar 

  28. Zuo, J., Baler, R., Dahl, G. & Voellmy, R. Activation of the DNA-binding ability of human heat shock transcription factor 1 may involve the transition from an intramolecular to an intermolecular triple-stranded coiled-coil structure. Mol. & Cell Biol. 14, 7557–7568 (1994).

    Article  CAS  Google Scholar 

  29. Peteranderl, R. & Nelson, H.C.M. Trimerization of the heat shock transcription factor by a triple-stranded α-helical coiled-coil. Biochemistry 31, 12272–12276 (1992).

    Article  CAS  Google Scholar 

  30. Ippolito, J.A., Alexander, R.S. & Christianson, D.W. Hydrogen bond stereochemistry in protein structure and function. J. Mol. Biol. 215, 457–471 (1990).

    Article  CAS  Google Scholar 

  31. Hendsch, Z.S. & Tidor, B. Do salt bridges stabilize proteins? A continuum electrostatic analysis. Protein Sci. 3, 211–226 (1994).

    Article  CAS  Google Scholar 

  32. Monera, O.D., Sonnichsen, F.D., Hicks, L., Kay, C.M. & Hodges, R.S. The relative positions of alanine residues in the hydrophobic core control the formation of two-stranded or four-stranded α-helical coiled-coils. Protein Eng. 9, 353–363 (1996).

    Article  CAS  Google Scholar 

  33. Harbury, P.B., Kim, P.S. & Alber, T. Crystal structure of an isoleucine-zipper trimer. Nature 371, 80–83 (1994).

    Article  CAS  Google Scholar 

  34. Lovejoy, B. et al. Crystal structure of a synthetic triple-stranded leucine zipper. Science 259, 1288–1293 (1993).

    Article  CAS  Google Scholar 

  35. Gill, S.C. & von Hippel, P.H. Calculation of protein extinction coefficients from amino acid sequence data. Analyt. Biochem. 182, 319–326 (1989).

    Article  CAS  Google Scholar 

  36. Laue, T.M., Shah, B.D., Ridgeway, T.M. & Pelletier, S.L. Analytical Ultracentrifugation in Biochemistry and Polymer Science (Eds S.E. Harding, A.J. Rowe & J.C. Horton) 90–125 (The Royal Society of Chemistry, Cambridge, 1992).

    Google Scholar 

  37. Johnson, M.L., Correia, J.J., Yphantis, D.A. & Halvorson, H.R. Analysis of data from the analytical ultracentrifuge by nonlinear least-squares techniques. Biophys. J. 36, 575–588 (1981).

    Article  CAS  Google Scholar 

  38. Tronrud, D.E., TenEyck, L.F. & Matthews, B.W. An efficient general purpose least-squares refinement program for macromolecular structures. Acta. Crystallogr. A 43, 489–501 (1987).

    Article  Google Scholar 

  39. Brünger, A.T. X-PLOR Version 3.1; A System for X-ray Crystallography and NMR. Yale University, New Haven (1990).

    Google Scholar 

  40. Van Holde, K.E. in The Proteins vol. 1 (H. Neurath and R.L Hill, eds.) 225–291 (Academic Press, San Francisco, 1975).

    Book  Google Scholar 

  41. Ponder, J.W. & Richards, F.M. Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J. Mol. Biol. 193, 775–791 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez, L., Woolfson, D. & Alber, T. Buried polar residues and structural specificity in the GCN4 leucine zipper. Nat Struct Mol Biol 3, 1011–1018 (1996). https://doi.org/10.1038/nsb1296-1011

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1296-1011

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing