Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Non-native α-helical intermediate in the refolding of β-lactoglobulin, a predominantly β-sheet protein

Abstract

It is generally assumed that folding intermediates contain partially formed native-like secondary structures. However, if we consider the fact that the conformational stability of the intermediate state is simpler than that of the native state, it would be expected that the secondary structures in a folding intermediate would not necessarily be similar to those of the native state. β-Lactoglobulin is a predominantly β-sheet protein, although it has a markedly high intrinsic preference for α-helical structure. We have studied the refolding kinetics of bovine β-lactoglobulin using stopped-flow circular dichroism and find that a partly α-helical intermediate accumulates transiently before formation of the native β-sheets. The present results suggest that the folding reaction of β-lactoglobulin follows a non-hierarchical mechanism, in which non-native α-helical structures play important roles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Anfinsen, C.B. Principles that govern the folding of protein chains. Science 181, 223–230 (1973).

    CAS  Google Scholar 

  2. Dill, K.A. et al. Principles of protein folding - A perspective from simple exact models. Protein Sci. 4, 561–602 (1995).

    Article  CAS  Google Scholar 

  3. Kuwajima, K. The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins: Struct. Funct. Genet. 6, 87–103 (1989).

    Article  CAS  Google Scholar 

  4. Ptitsyn, O.B. The molten globule state. In Protein Folding (ed. Creighton, T.E.) 243–300 (W. H. Freeman and Company, New York, 1992).

    Google Scholar 

  5. Jennings, P.A. & Wright, P.E. Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin. Science 262, 892–896 (1993)

    Article  CAS  Google Scholar 

  6. Balbach, J. et al. Following protein folding in real time using NMR spectroscopy. Nature Struct. Biol. 2, 865–870 (1995).

    Article  CAS  Google Scholar 

  7. Fersht, A.R. Optimization of rates of protein folding: The nucleation-condensation mechanism and its implications. Proc. Natl. Acad. Sci. USA 92, 10869–10873 (1995).

    Article  CAS  Google Scholar 

  8. Shakhnovich, E.I. Modeling protein folding: the beauty and power of simplicity. Folding & Design 1, R50–R54 (1996).

    Article  CAS  Google Scholar 

  9. Baldwin, R.L. The nature of protein folding pathways: The classical versus the new view. J. Biochem. NMR 5, 103–109 (1995).

    CAS  Google Scholar 

  10. Itzhaki, L.S., Otzen, D.E. & Fersht, A.R. The structure of the transition state for folding of chymotrypsin inhibitor 2 analysed by protein engineering methods: Evidence for a nucleation-condensation mechanism for protein folding. J. Mol. Biol. 254, 260–288 (1995).

    Article  CAS  Google Scholar 

  11. Pervaiz, S. & Brew, K. Homology of β-lactoglobulin, serum retinol-binding protein, and protein HC. Science 228, 335–337 (1985).

    Article  CAS  Google Scholar 

  12. Papiz, M.Z. et al. The structure of β-lactoglobulin and its similarity to plasma retinol-binding protein. Nature 324, 383–385 (1986).

    Article  CAS  Google Scholar 

  13. Monaco, H.L. et al. Crystal structure of the trigonal form of bovine β-lactoglobulin and of its complex with retinol at 2.5 Å resolution. J. Mol. Biol. 197, 695–706 (1987).

    Article  CAS  Google Scholar 

  14. Fugate, R.G. & Song, P.-S. Spectroscopic characterization of β-lactoglobulin-retinol complex. Biochim. Biophys. Acta 625, 28–42 (1980).

    Article  CAS  Google Scholar 

  15. Kuwajima, K., Yamaya, H., Miwa, S., Sugai, S. & Nagamura, T. Rapid formation of secondary structure framework in protein folding studied by stopped-flow circular dichroism. FEBS Lett. 221, 115–118 (1987).

    Article  CAS  Google Scholar 

  16. Kuwajima, K. Stopped-flow circular dichroism. In Circular dichroism and the conformational analysis of biomolecules (ed. Fasman, G.D.), 159–182 (Plenum, New York, 1996).

    Chapter  Google Scholar 

  17. Nishikawa, K. & Noguchi, T. Predicting protein secondary structure based on amino acid sequence. Methods Enzymol. 202, 21–24 (1991).

    Google Scholar 

  18. Shiraki, K., Nishikawa, K. & Goto, Y. Trifluoroethanol-induced stabilization of the α-helical structure of β-lactoglobulin: Implication for non-hierarchical protein folding. J. Mol. Biol. 245, 180–194 (1995).

    Article  CAS  Google Scholar 

  19. Hamada, D., Kuroda, Y., Tanaka, T. & Goto, Y. High helical propensity of the peptide fragments derived from β-lactoglobulin, a predominantly β-sheet protein. J. Mol. Biol. 254, 737–746 (1995).

    Article  CAS  Google Scholar 

  20. Kuroda, Y., Hamada, D., Tanaka, T. & Goto, Y. High helicity of peptide fragments corresponding to β-strand regions of β-lactoglobulin observed by 2D-NMR spectroscopy. Folding & Design 1, 243–251 (1996).

    Article  Google Scholar 

  21. Dufour, E., Bertrand, H.C. & Haertle, T. Reversible effects of medium dielectric constant on structural transformation of β-lactoglobulin and its retinol binding. Biopolymers 33, 589–598 (1993).

    Article  CAS  Google Scholar 

  22. Liu, Z.-P., Rizo, J. & Gierasch, L.M. Equilibrium folding studies of cellular retinoic acid binding protein, a predominantly β-sheet protein. Biochemistry 33, 134–142 (1994).

    Article  CAS  Google Scholar 

  23. Chaffote, A.F., Guillou, Y. & Goldberg, M.E. Kinetic resolution of peptide bond and side chain far-UV circular dichroism during the folding of hen egg lysozyme. Biochemistry 31, 9694–9703 (1992).

    Article  Google Scholar 

  24. Chen, Y.H., Yang, J.T. & Chau, K.H. Determination of the helix and β form of proteins in aqueous solution by circular dichroism. Biochemistry 20, 33–37 (1994).

    Google Scholar 

  25. Filimonov, V.V., Prieto, J., Martinez, J.C., Bruix, M., Mateo, P.L., Serrano, L. Thermodynamic analysis of the chemotactic protein from Escherichia coli, CheY. Biochemistry 47, 12906–12921 (1994).

    Google Scholar 

  26. López-Hernández, E. & Serrano, L. Structure of the transition state for folding of the 129aa protein CheY resembles that of a smaller protein, CI-2. Folding & Design 1, 43–55 (1996).

    Article  Google Scholar 

  27. Wright, P.E., Dyson, H.J. & Lerner, R.A. Conformation of peptide fragments of proteins in aqueous solution: Implication for initiation of protein folding. Biochemistry 27, 7164–7175 (1988).

    Google Scholar 

  28. Dyson, H.J., Merutka, G., Waltho, J.P., Lerner, R.A. & Wright, P.E. Folding of peptide fragments comprising the complete sequence of proteins. Models for initiation of protein folding. I. Myohemerythrin. J. Mol. Biol. 226, 795–817 (1992).

    Article  CAS  Google Scholar 

  29. Dyson, H.J. et al. Folding of peptide fragments comprising the complete sequence of proteins. Models for initiation of protein folding. II. Plastocyanin. J. Mol. Biol. 226, 819–835 (1992).

    Article  CAS  Google Scholar 

  30. Waterhous, D.V. & Johnson, W.C., Jr. Importance of environment in determining secondary structure in proteins. Biochemistry 33, 2121–2128 (1994).

    Article  CAS  Google Scholar 

  31. Minor Jr., D.L. & Kim, P.S. Context-dependent secondary structure formation of a designed protein sequence. Nature 380, 730–734 (1996).

    Article  CAS  Google Scholar 

  32. Mottonen, J. et al. Structural basis of latency in plasminogen activator inhibitor-1. Nature 355, 27–273 (1992).

    Article  Google Scholar 

  33. Sancho, E., Declerck, P.J., Price, N.C., Kelly, S.M. & Booth, N.A. Conformational studies on plasminogen activator inhibitor (PAI-1) in -active, latent, substrate, and cleaved forms. Biochemistry 34, 1064–1069 (1995).

    Article  CAS  Google Scholar 

  34. Gutin, A.M., Abkevich, V.I. & Shakhnovich, E.I. Is burst hydrophobic collapse necessary for protein folding? Biochemistry 34, 3066–3076 (1995).

    Article  CAS  Google Scholar 

  35. Arcus, V.L., Vuilleumier, S., Freund, S.M.V., Bycroft, M. & Fersht, A.R. A comparison of the pH, urea, and temperature-denatured states of barnase by heteronuclear NMR: Implications for the initiation of protein folding. J. Mol. Biol. 254, 305–321 (1995).

    Article  CAS  Google Scholar 

  36. Radford, S.E. & Dobson, C.M. Insight into protein folding using physical techniques: studies of lysozyme and α-lactalbumin. Phil. Trans. R. Soc. Lond. B. 348, 17–25 (1995).

    Article  CAS  Google Scholar 

  37. Kiefhaber, T. Kinetic traps in lysozyme folding. Proc. Natl. Acad. Sci. USA 92, 9029–9033 (1995).

    Article  CAS  Google Scholar 

  38. Bryngelson, J.P., Onuchic, J.N., Socci, N.D. & Wolynes, P.G. Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins: Struct. Funct. Genet. 21, 167–195 (1995).

    Article  CAS  Google Scholar 

  39. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 956–950 (1991).

    Article  Google Scholar 

  40. Kabsch, W. & Sander, C. Dictionary of protein secondary structure: Pattern recognition of hydrogen–bonded and geometrical features. Biopolymers 22, 2577–2637 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamada, D., Segawa, Si. & Goto, Y. Non-native α-helical intermediate in the refolding of β-lactoglobulin, a predominantly β-sheet protein. Nat Struct Mol Biol 3, 868–873 (1996). https://doi.org/10.1038/nsb1096-868

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1096-868

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing