Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Calcium-induced structural changes and domain autonomy in calmodulin

Abstract

We have determined the solution structures of the apo and (Ca2+)2 forms of the carboxy-terminal domain of calmodulin using multidimensional heteronuclear nuclear magnetic resonance spectroscopy. The results show that both forms adopt well-defined structures with essentially equal secondary structure. A comparison of the structures of the two forms shows that Ca2+ binding causes major rearrangements of the secondary structure elements with changes in inter-residue distances of up to 15 Å and exposure of the hydrophobic interior of the four-helix bundle. Comparisons with previously determined high-resolution X-ray structures and models of calmodulin indicate that this domain is structurally autonomous.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Klee, C.B. in Molecular Aspects of Cellular Regulation (eds. Cohen, P. & Klee, C.B.) 35–56 (Elsevier, New York; 1988).

    Google Scholar 

  2. Crivici, A. & Ikura, M. Molecular and structural basis of target recognition by calmodulin. Annu. Rev. biophys. biomol. Struct. 24 85–116 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Kawasaki, H. & Kretsinger, R.H., Calcium-Binding Proteins 1: EF-hands. Protein Profile 1 343–346 (1994).

    CAS  PubMed  Google Scholar 

  4. Walsh, M., Stevens, F.C., Kuznicki, J. & Drabikowski, W. Characterization of tryptic fragments obtained from bovine brain protein modulator of cyclic nucleotide phosphodiesterase. J. biol. Chem. 252 7440–7443 (1977).

    Article  CAS  PubMed  Google Scholar 

  5. Drabikowski, W., Kuznicki, J. & Grabarek, Z. Similarity in Ca2+-induced changes between troponin-C and protein activator of 3′:5′-cyclic nucleotide phosphodiesterase and their tryptic fragments Biochim. biophys. Acta 485 124–133 (1977).

    Article  CAS  PubMed  Google Scholar 

  6. Babu, Y.S., Bugg, C.E. & Cook, W.J. Three-dimensional structure of calmodulin refined at 2. 2 Å resolution. J. molec. Biol. 204, 191–204 (1988).

    Article  CAS  PubMed  Google Scholar 

  7. Chattopadhyaya, R., Meador, W.E., Means, A.R. & Quiocho, F.A. Calmodulin structure refined at 1.7 A resolution J. molec. Biol. 228, 1177–92 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Taylor, D.A., Sack, J.S., Maune, J.F., Beckingham, K. & Quiocho, F.A. Structure of a recombinant calmodulin from Drosophila melanogaster refined at 2.2- Å resolution J. biol. Chem. 266, 21375–80 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Rao, S.T. et al. Structure of Paramecium tetraurelia calmodulin at 1.8 Å resolution Protein Sci. 2, 436–47 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Barbato, G., Ikura, M., Kay, L.E., Pastor, R.W. & Bax, A. Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy: the central helix is flexible Biochemistry 31, 5269–78 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Heidorn, D.B. & Trewhella, J. Comparison of the crystal and solution structures of calmodulin and troponin C. Biochemistry 27, 909–915 (1988).

    Article  CAS  PubMed  Google Scholar 

  12. Meador, W.E., Means, A.R. & Quiocho, F.A. Target enzyme recognition by calmodulin: 2.4 Å structure of a calmodulin-peptide complex Science 257, 1251–5 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Meador, W.E., Means, A.R. & Quiocho, F.A. Modulation of calmodulin plasticity in molecular recognition on the basis of X-ray structures. Science 262, 1718–1721 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Ikura, M. et al. Solution structure of a calmodulin-target peptide complex by multidimensional NMR Science 256, 632–8 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Clore, G.M., Bax, A., Ikura, I. & Gronenborn, A.M. Structure of calmodulin-target peptide complexes Curr. Opin. struct. Biol. 3, 838–845 (1993).

    Article  CAS  Google Scholar 

  16. Finn, B.E. & Forsén, S. The evolving model of calmodulin structure, function and activation. Structure 3, 7–11 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Herzberg, O. & James, M.N.G. Structure of the calcium regulatory muscle protein troponin C at 2.8 Å resolution Nature 313, 653–659 (1985).

    Article  CAS  PubMed  Google Scholar 

  18. Herzberg, O. & James, M.N.G. Refined crystal structure of troponin C from turkey skeletal muscle at 2.0 Å. J. molec. Biol. 203, 761–779 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. LaPorte, D.C., Wierman, B.M. & Storm, D.R. Calcium-induced exposure of a hydrophobic surface on calmodulin. Biochemistry 19, 3814–3819 (1980).

    Article  CAS  PubMed  Google Scholar 

  20. Seaton, B.A., Head, J.F. & Richards, F.M. Calcium-induced increase in the radius of gyration and maximum dimension of calmodulin measured by small-angle X-ray scattering Biochemistry 24, 6740–6743 (1985).

    Article  CAS  PubMed  Google Scholar 

  21. Strynadka, N.C.J. & James, M.N.G. Two trifluoroperazine-binding sites on calmodulin predicted from comparative molecular modeling with troponin C. Proteins Struct. Func. Genet. 3, 1–17 (1988).

    Article  CAS  Google Scholar 

  22. Finn, B.E., Drakenberg, T. & Forsén, S. The structure of apocalmodulin: A1H NMR examination of the carboxy-terminal domain. FEBS Lett. 336, 368–374 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures J appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  24. Kabsch, W. & Sander, C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983).

    Article  CAS  PubMed  Google Scholar 

  25. Pedigo, S. & Shea, M.A. Quantitative endoprotease GluC footprinting of cooperative Ca2+ binding to calmodulin: Susceptibility of E31 and E87 indicates interdomain interactions. Biochemistry 34, 1179–1196 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Hennessey, J.P.J., et al. Conformational transitions of calmodulin as studied by vacuum-UV CD Biopolymers 26, 561–571 (1987).

    Article  CAS  PubMed  Google Scholar 

  27. Linse, S., Helmersson, A. & Forsén, S. Calcium binding to calmodulin and its globular domains J. biol. Chem. 266, 8050–4 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Manning, M.C. Underlying assumptions in the estimation of secondary structure in proteins by circular dichroism spectroscopy - A critical review. J. Pharm. biomed. Analysis 7, 1103–1119 (1989).

    Article  CAS  Google Scholar 

  29. Gagné, S.M., et al. Quantification of the calcium-induced secondary structural changes in the regulatory domain of troponin-C Prot. Sci. 3, 1961–1974 (1994).

    Article  Google Scholar 

  30. Urbauer, J.L., Short, J.H., Dow, L.K. & Wand, J.A. Structural analysis of a novel interaction by calmodulin: High-affinity binding of a peptide in the absence of calcium. Biochemsitry 34, 8099–8109 (1995).

    Article  CAS  Google Scholar 

  31. Brodin, P., et al. Expression of bovine intestinal calcium binding protein from a synthetic gene in Escherichia coli and characterization of the product. Biochemistry 25, 5371–5377 (1986).

    Article  CAS  PubMed  Google Scholar 

  32. Macura, S. & Ernst, R.R. Elucidation of cross relaxation in liquids by two-dimensional N.M.R. spectroscopy Mol. Phys. 41, 95–117 (1980).

    Article  CAS  Google Scholar 

  33. Bax, A. A spatially selective composite 90 degree radiofrequency pulse. J. magn. Reson. 65, 142–145 (1985).

    Google Scholar 

  34. Aue, W.P., Batholdi, E. & Ernst, R.R. Two-dimensional spectroscopy: Application to nuclear magnetic resonance. J. chem. Phys. 64, 2229–2246 (1976).

    Article  CAS  Google Scholar 

  35. Mueller, L.P.E. COSY, a simple alternative to E-COSY J. magn. Reson. 72, 191–196 (1987).

    CAS  Google Scholar 

  36. Braunschweiler, L. & Ernst, R.R. Coherence transfer by isotropic mixing: Application to proton correlation spectroscopy. J. magn. Reson. 53, 521–528 (1983).

    CAS  Google Scholar 

  37. Bax, A. & Davis, D.G. MLEV-17 based two-dimensional homonuclear magnetization transfer spectroscopy. J. magn. Reson. 65, 355–360 (1985).

    CAS  Google Scholar 

  38. Marion, D., Kay, L.E., Sparks, S.W., Torchia, D.A. & A., B. Three-dimensional heteronuclear NMR of 15N-labeled proteins. J. Am. chem. Soc. 111, 1515 (1989).

    Article  CAS  Google Scholar 

  39. Koning, T.M.G., Boelens, R. & Kaptein, R. Calculation of the nuclear Overhauser effect and the determination of proton-proton distances in the presence of internal motions J. magn. Reson. 90, 111–123 (1990).

    CAS  Google Scholar 

  40. Tropp, J. Dipolar relaxation and nuclear Overhauser effects in nonrigid molecules: The effect of fluctuating internuclear distances J. chem. Phys. 72, 6035–6043 (1980).

    Article  CAS  Google Scholar 

  41. Montelione, G.T., Winkler, M.E., Rauenbuehler, P. & Wagner, G. Accurate measurements of long-range heteronuclear coupling constants from homonuclear 2D NMR spectra of isotope-enriched proteins J. magn. Reson. 82, 198–204 (1989).

    CAS  Google Scholar 

  42. Brünger, A.T. X-PLOR Version 3.7 (Yale University, New Haven; 1992).

    Google Scholar 

  43. Nilges, M., Clore, G.M. & Gronenborn, A.M. Determination of three-dimensional structures of proteins from interproton distance data by hybrid distance-dynamical simulated annealing calculations FEBS Lett. 229, 317–324 (1988).

    Article  CAS  PubMed  Google Scholar 

  44. Nilges, M.A. A calculational strategy for the structure determination of symmetric dimers by 1H NMR. Proteins Struct. Funct. Genet. 17, 295–309 (1993).

    Article  Google Scholar 

  45. Ferrin, T.E., Huang, C.C., Jarvis, L.E. & Langridge, R. The MIDAS display system J. molec. Graphics 6, 13–27 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finn, B., Evenäs, J., Drakenberg, T. et al. Calcium-induced structural changes and domain autonomy in calmodulin. Nat Struct Mol Biol 2, 777–783 (1995). https://doi.org/10.1038/nsb0995-777

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0995-777

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing