Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Solution structure of calcium-free calmodulin

Abstract

The three-dimensional structure of calmodulin in the absence of Ca2+ has been determined by three- and four-dimensional heteronuclear NMR experiments, including ROE, isotope-filtering combined with reverse labelling, and measurement of more than 700 three-bond J-couplings. In analogy with the Ca2+-ligated state of this protein, it consists of two small globular domains separated by a flexible linker, with no stable, direct contacts between the two domains. In the absence of Ca2+, the four helices in each of the two globular domains form a highly twisted bundle, capped by a short anti-parallel β-sheet. This arrangement is qualitatively similar to that observed in the crystal structure of the Ca2+-free N-terminal domain of troponin C.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Molecular aspects of cellular regulation Cohen, P. & Klee, C.B. eds. (Elsevier, Amsterdam, 1988).

  2. Babu, Y.S., Bugg, C.E. & Cook, W.J. Structure of calmodulin refined at 2.2 Å resolution. J. molec. Biol. 204, 191–204 (1988).

    Article  CAS  Google Scholar 

  3. Barbato, G., Ikura, M., Kay, L.E. & Bax, A. Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy: The central helix is flexible. Biochemistry 31, 5269–5278 (1992).

    Article  CAS  Google Scholar 

  4. Heidorn, D.B. & Trewhella, J. Comparison of the crystal and solution structures of calmodulin and troponin-C. Biochemistry 27, 909–915 (1988).

    Article  CAS  Google Scholar 

  5. Seeholzer, S.H. & Wand, A.J. Structural characterization of the interactions between calmodulin and skeletal muscle myosin light chain kinase: Effect of peptide (576-594)G binding on the Ca2+-binding domains. Biochemistry 25, 4011–4020 (1989).

    Article  Google Scholar 

  6. Ikura, M., Kay, L.E. & Bax, A. A novel approach for sequential assignment of 1H, 13C, and 15N spectra of larger proteins: Heteronuclear triple-resonance NMR spectroscopy. Application to calmodulin. Biochemistry 29, 4659–4667 (1990).

    Article  CAS  Google Scholar 

  7. Kretsinger, R.H. Structure and evolution of calcium-modulated proteins. CRC crit. rev. Biochem. 8, 119–174 (1980).

    Article  CAS  Google Scholar 

  8. Strynadka, N.C.J. & James, M.N.G. Two trifluoroperazine-binding sites on calmodulin predicted from comparative molecular modeling with troponin-C. Proteins Struct. Funct. Genet. 3, 1–17 (1988).

    Article  CAS  Google Scholar 

  9. Herzberg, O. & James, M.N.G. Refined crystal structure of troponin-C from turkey skeletal muscle at 2.0 Å resolution. J. molec. Biol. 203, 761–779 (1988).

    Article  CAS  Google Scholar 

  10. Herzberg, O., Moult, J. & James, M.N.G. A model for the Ca2+-induced conformational transition of troponin-C. J. biol. Chem. 261, 2638–2644 (1986).

    CAS  PubMed  Google Scholar 

  11. Ikura, M. et al. Solution structure of a calmodulin-target peptide complex by multi-dimensional NMR. Science 256, 632–638 (1992).

    Article  CAS  Google Scholar 

  12. Meador, W.E., Means, A.R. & Quiocho, F.A. Target enzyme recognition by calmodulin: 2.4 Å structure of a calmodulin-peptide complex. Science 257, (1992).

    Article  CAS  Google Scholar 

  13. Skelton, N.J., Kördel, J., Akke, M., Forsen, S. & Chazin, W.J. Signal transduction versus buffering activity in Ca2+-binding proteins. Nature struct. Biol. 1, 239–245 (1994).

    Article  CAS  Google Scholar 

  14. Gagné, S.M. et al. Quantification of the calcium-induced secondary structural changes in the regulatory domain of troponin-C. Prot. Sci. 3, 1961–1974 (1994).

    Article  Google Scholar 

  15. Finn, B.E., Drakenberg, T. & Forsen, S. The structure of apo-calmodulin: A 1H NMR examination of the carboxy-terminal domain. FEBS Lett. 336, 368–374 (1994).

    Article  Google Scholar 

  16. Tjandra, N., Kuboniwa, H., Ren, H. & Bax, A. Rotational dynamics of calcium-free calmodulin studied by l5N NMR relaxation measurements. Eur. J. Biochem. 230, 1014–1024 (1995).

    Article  CAS  Google Scholar 

  17. Bax, A., Max, D. & Zax, D. Measurement of multiple-bond 13C-13C J-couplings in a 20-kDa protein-peptide complex. J. Am. chem. Soc. 114, 6923–6925 (1992).

    Article  CAS  Google Scholar 

  18. Bothner-By, A.A. et al. Structure determination of a tetrasaccharide: Transient nuclear Overhauser effects in the rotating frame. J. Am. chem. Soc. 106, 811–813 (1984).

    Article  CAS  Google Scholar 

  19. Bax, A., Sklenar, V. & Summers, M.F. Direct identification of relayed nuclear Overhauser effects. J. magn. Reson. 70, 327–331 (1986).

    CAS  Google Scholar 

  20. Vuister, G.W. et al. Solution structure of the DNA-binding domain of Drosophila heat shock transcription factor. Nature struct. Biol. 605–614 (1994).

  21. Vuister, G.W., Kim, S.-J., Wu, C. & Bax, A. 2D and 3D NMR study of phenylalanine residues in proteins by reverse isotopic labeling. J. Am. chem. Soc. 116, 9206–9210 (1994).

    Article  CAS  Google Scholar 

  22. Akke, M., Skelton, N.J., Kördel, J., Palmer, A.G. & Chazin, W.J. Effects of ion binding on the backbone dynamics of calbindin D9k determined by 15N NMR relaxation. Biochemistry 32, 9832–9844 (1993).

    Article  CAS  Google Scholar 

  23. Wüthrich, K. NMR of proteins and nucleic acids (Wiley, New York, 1986).

    Book  Google Scholar 

  24. Gronenborn, A.M. & Clore, G.M. Identification of N-terminal helix capping boxes by means of 13C chemical shifts. J. biomol. NMR. 4, 455–458 (1994).

    Article  CAS  Google Scholar 

  25. Seale, J.W., Srinivasan, R. & Rose, G.D. Sequence determinants of the capping box, a stabilizing motif at the N-termini of α-helices. Prot. Science 3, 1741–1745 (1994).

    Article  CAS  Google Scholar 

  26. Newton, D.L., Oldewurtel, M.D., Krinks, M.H., Shiloach, J. & Klee, C.B. Agonist and antagonist properties of calmodulin fragments. J. biol. Chem. 259, 4419–4426 (1984).

    CAS  PubMed  Google Scholar 

  27. Tsalkova, T.N. & Privalov, P.L., Thermodynamic Study of domain organization in troponin-C and calmodulin. J. molec. Biol. 181, 533–544 (1985).

    Article  CAS  Google Scholar 

  28. Meador, W.E., Means, A.R. & Quiocho, F.A. Modulation of calmodulin plasticity in molecular recognition based on X-ray structures. Nature 262, 1718–1721 (1993).

    CAS  Google Scholar 

  29. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. biomol. NMR in the press.

  30. Garrett, D.S., Powers, R., Gronenborn, A.M. and Clore, G.M. A common sense approach to peak picking in two-, three-, and four-dimensional spectra using automatic computer analysis of contour diagrams. J. magn. Reson. 95, 214–220 (1991).

    CAS  Google Scholar 

  31. Grzesiek, S. & Bax, A. Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N enriched proteins. J. biomol. NMR 3, 185–204 (1993).

    CAS  PubMed  Google Scholar 

  32. Bax, A., Clore, G.M. & Gronenborn, A.M. . 1H-1H correlation via isotropic mixing of 13C magnetization: A new three -dimentional approch for assigning 1H and 13C spectra of 13C-enriched proteins. J. magn. Reson. 88, 425–431 (1990).

    CAS  Google Scholar 

  33. Bax, A., Delaglio, F., Grzesiek, S. & Vuister, G.W. Resonance assignment of methionine methyl groups and χ3 angular information from long range proton-carbon. J-correlation in a calmodulin-peptide complex. J. biomol. NMR 4, 787–797 (1994).

    Article  CAS  Google Scholar 

  34. Grzesiek, S. & Bax, A. Measurement of amide proton exchange rates and NOE with water in 13C/15N enriched calcineurin B. J. biomol. NMR 3, 627–638 (1993).

    CAS  PubMed  Google Scholar 

  35. Muhandiram, D.R., Xu, G.Y. & Kay, L.E. An enhanced-sensitivity pure absorption gradient 4D 13C-edited NOESY experiment. J. biomol. NMR 3, 463–470 (1993).

    Article  CAS  Google Scholar 

  36. Vuister, G.W. et al. Increased resolution and improved spectral quality in four-dimensional 13C/13C separated HMQC-NOESY-HMQC spectra using pulsed field gradients. J. magn. Reson. B 101, 210–213 (1993).

    Article  Google Scholar 

  37. Brünger, A.T. X-PLOR Version 3.1: A System for X-ray Crystallography and NMR, Yale University, New Haven, CT, USA (1992).

    Google Scholar 

  38. Nilges, M. A calculation strategy for the structure determination of symmetric dimers by 1H NMR. Proteins Struct. Funct. Genet. 17, 297–309 (1993).

    Article  CAS  Google Scholar 

  39. Bax, A. et al. Measurement of homo- and heteronuclear J-couplings from quantitative J-correlation. Meth. Enzymol. 239, 79–125 (1994).

    Article  CAS  Google Scholar 

  40. Nilges, M., Clore, G.M. & Gronenborn, A.M. Determination of three-dimensional structures of proteins from interproton distance data by hybrid distance geometry-dynamical simulated annealing calculations. FEBS Lett. 229, 317–324 (1988).

    Article  CAS  Google Scholar 

  41. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J. PROCHECK: a program to check the stereochemical quality of protein structures. J. appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  42. Kraulis, P.J. MOLSCRIPT: a program to produce detailed and schematic plots of protein structures. J. appl. Crystallogr. 24, 946–950 (1991).

    Google Scholar 

  43. Qin, J., Clore, G.M. & Gronenborn, A.M. The high-resolution three-dimensional solution structures of the oxidized and reduced states of human thioredoxin. Structure 2, 503–522 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuboniwa, H., Tjandra, N., Grzesiek, S. et al. Solution structure of calcium-free calmodulin. Nat Struct Mol Biol 2, 768–776 (1995). https://doi.org/10.1038/nsb0995-768

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0995-768

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing