Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Substrate binding on the APC/C occurs between the coactivator Cdh1 and the processivity factor Doc1

Abstract

The anaphase-promoting complex/cyclosome (APC/C) is a 22S ubiquitin ligase complex that initiates chromosome segregation and mitotic exit. We have used biochemical and electron microscopic analyses of Saccharomyces cerevisiae and human APC/C to address how the APC/C subunit Doc1 contributes to recruitment and processive ubiquitylation of APC/C substrates, and to understand how APC/C monomers interact to form a 36S dimeric form. We show that Doc1 interacts with Cdc27, Cdc16 and Apc1 and is located in the vicinity of the cullin–RING module Apc2–Apc11 in the inner cavity of the APC/C. Substrate proteins also bind in the inner cavity, in close proximity to Doc1 and the coactivator Cdh1, and induce conformational changes in Apc2–Apc11. Our results suggest that substrates are recruited to the APC/C by binding to a bipartite substrate receptor composed of a coactivator protein and Doc1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Incorporation of a photo-cross-linker into Doc1 results in cross-link products between Doc1 and APC/C subunits.
Figure 2: Identification of APC/C subunits that interact with Doc1.
Figure 3: Purification and 3D reconstruction of budding yeast APC/C.
Figure 4: Localization of Doc1 and Swm1 in the yeast APC/C 3D structure by subunit deletion and td2 labeling.
Figure 5: APC/C subunit localization using td2 labeling.
Figure 6: Analysis of APC/C dimers.
Figure 7: In vitro reconstitution of human APC/C bound to a substrate molecule.
Figure 8: Topological comparison of human and budding yeast APC/C.

Similar content being viewed by others

Accession codes

Primary accessions

Electron Microscopy Data Bank

References

  1. Peters, J.M. The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat. Rev. Mol. Cell Biol. 7, 644–656 (2006).

    Article  CAS  Google Scholar 

  2. Matyskiela, M.E., Rodrigo-Brenni, M.C. & Morgan, D.O. Mechanisms of ubiquitin transfer by the anaphase-promoting complex. J. Biol. 8, 92 (2009).

    Article  Google Scholar 

  3. Musacchio, A. & Salmon, E.D. The spindle-assembly checkpoint in space and time. Nat. Rev. Mol. Cell Biol. 8, 379–393 (2007).

    Article  CAS  Google Scholar 

  4. Au, S.W., Leng, X., Harper, J.W. & Barford, D. Implications for the ubiquitination reaction of the anaphase-promoting complex from the crystal structure of the Doc1/Apc10 subunit. J. Mol. Biol. 316, 955–968 (2002).

    Article  CAS  Google Scholar 

  5. Wendt, K.S. et al. Crystal structure of the APC10/DOC1 subunit of the human anaphase-promoting complex. Nat. Struct. Biol. 8, 784–788 (2001).

    Article  CAS  Google Scholar 

  6. Wang, J., Dye, B.T., Rajashankar, K.R., Kurinov, I. & Schulman, B.A. Insights into anaphase promoting complex TPR subdomain assembly from a CDC26–APC6 structure. Nat. Struct. Mol. Biol. 16, 987–989 (2009).

    Article  CAS  Google Scholar 

  7. Zhang, Z. et al. Molecular structure of the N-terminal domain of the APC/C subunit Cdc27 reveals a homo-dimeric tetratricopeptide repeat architecture. J. Mol. Biol. 397, 1316–1328 (2010).

    Article  CAS  Google Scholar 

  8. Han, D., Kim, K., Kim, Y., Kang, Y. & Lee, J.Y. Crystal structure of the N-terminal domain of anaphase-promoting complex subunit 7. J. Biol. Chem. 284, 15137–15146 (2009).

    Article  CAS  Google Scholar 

  9. Dube, P. et al. Localization of the coactivator Cdh1 and the cullin subunit Apc2 in a cryo-electron microscopy model of vertebrate APC/C. Mol. Cell 20, 867–879 (2005).

    Article  CAS  Google Scholar 

  10. Herzog, F. et al. Structure of the anaphase-promoting complex/cyclosome interacting with a mitotic checkpoint complex. Science 323, 1477–1481 (2009).

    Article  CAS  Google Scholar 

  11. Ohi, M.D. et al. Structural organization of the anaphase-promoting complex bound to the mitotic activator Slp1. Mol. Cell 28, 871–885 (2007).

    Article  CAS  Google Scholar 

  12. Passmore, L.A. et al. Structural analysis of the anaphase-promoting complex reveals multiple active sites and insights into polyubiquitylation. Mol. Cell 20, 855–866 (2005).

    Article  CAS  Google Scholar 

  13. Vodermaier, H.C., Gieffers, C., Maurer-Stroh, S., Eisenhaber, F. & Peters, J.M. TPR subunits of the anaphase-promoting complex mediate binding to the activator protein CDH1. Curr. Biol. 13, 1459–1468 (2003).

    Article  CAS  Google Scholar 

  14. Schwickart, M. et al. Swm1/Apc13 is an evolutionarily conserved subunit of the anaphase-promoting complex stabilizing the association of Cdc16 and Cdc27. Mol. Cell. Biol. 24, 3562–3576 (2004).

    Article  CAS  Google Scholar 

  15. Thornton, B.R. et al. An architectural map of the anaphase-promoting complex. Genes Dev. 20, 449–460 (2006).

    Article  CAS  Google Scholar 

  16. Passmore, L.A. et al. Doc1 mediates the activity of the anaphase-promoting complex by contributing to substrate recognition. EMBO J. 22, 786–796 (2003).

    Article  CAS  Google Scholar 

  17. Carroll, C.W. & Morgan, D.O. The Doc1 subunit is a processivity factor for the anaphase-promoting complex. Nat. Cell Biol. 4, 880–887 (2002).

    Article  CAS  Google Scholar 

  18. Grossberger, R. et al. Characterization of the DOC1/APC10 subunit of the yeast and the human anaphase-promoting complex. J. Biol. Chem. 274, 14500–14507 (1999).

    Article  CAS  Google Scholar 

  19. Gieffers, C., Schleiffer, A. & Peters, J.M. Cullins and cell cycle control. Protoplasma 211, 20–28 (2000).

    Article  CAS  Google Scholar 

  20. Carroll, C.W., Enquist-Newman, M. & Morgan, D.O. The APC subunit Doc1 promotes recognition of the substrate destruction box. Curr. Biol. 15, 11–18 (2005).

    Article  CAS  Google Scholar 

  21. Hwang, L.H. & Murray, A.W. A novel yeast screen for mitotic arrest mutants identifies DOC1, a new gene involved in cyclin proteolysis. Mol. Biol. Cell 8, 1877–1887 (1997).

    Article  CAS  Google Scholar 

  22. Brunner, J. New photolabeling and crosslinking methods. Annu. Rev. Biochem. 62, 483–514 (1993).

    Article  CAS  Google Scholar 

  23. Zachariae, W., Shin, T.H., Galova, M., Obermaier, B. & Nasmyth, K. Identification of subunits of the anaphase-promoting complex of Saccharomyces cerevisiae. Science 274, 1201–1204 (1996).

    Article  CAS  Google Scholar 

  24. Campbell, R.E. et al. A monomeric red fluorescent protein. Proc. Natl. Acad. Sci. USA 99, 7877–7882 (2002).

    Article  CAS  Google Scholar 

  25. Häcker, I. et al. Localization of Prp8, Brr2, Snu114 and U4/U6 proteins in the yeast tri-snRNP by electron microscopy. Nat. Struct. Mol. Biol. 15, 1206–1212 (2008).

    Article  Google Scholar 

  26. Hall, M.C., Torres, M.P., Schroeder, G.K. & Borchers, C.H. Mnd2 and Swm1 are core subunits of the Saccharomyces cerevisiae anaphase-promoting complex. J. Biol. Chem. 278, 16698–16705 (2003).

    Article  CAS  Google Scholar 

  27. Yoon, H.J. et al. Proteomics analysis identifies new components of the fission and budding yeast anaphase-promoting complexes. Curr. Biol. 12, 2048–2054 (2002).

    Article  CAS  Google Scholar 

  28. Kraft, C., Vodermaier, H.C., Maurer-Stroh, S., Eisenhaber, F. & Peters, J.M. The WD40 propeller domain of Cdh1 functions as a destruction box receptor for APC/C substrates. Mol. Cell 18, 543–553 (2005).

    Article  CAS  Google Scholar 

  29. Matyskiela, M.E. & Morgan, D.O. Analysis of activator-binding sites on the APC/C supports a cooperative substrate-binding mechanism. Mol. Cell 34, 68–80 (2009).

    Article  CAS  Google Scholar 

  30. Burton, J.L., Tsakraklides, V. & Solomon, M.J. Assembly of an APC-Cdh1-substrate complex is stimulated by engagement of a destruction box. Mol. Cell 18, 533–542 (2005).

    Article  CAS  Google Scholar 

  31. Burton, J.L. & Solomon, M.J. D box and KEN box motifs in budding yeast Hsl1p are required for APC-mediated degradation and direct binding to Cdc20p and Cdh1p. Genes Dev. 15, 2381–2395 (2001).

    Article  CAS  Google Scholar 

  32. Kastner, B. et al. GraFix: sample preparation for single-particle electron cryomicroscopy. Nat. Methods 5, 53–55 (2008).

    Article  CAS  Google Scholar 

  33. Passmore, L.A. & Barford, D. Coactivator functions in a stoichiometric complex with anaphase-promoting complex/cyclosome to mediate substrate recognition. EMBO Rep. 6, 873–878 (2005).

    Article  CAS  Google Scholar 

  34. Burton, J.L. & Solomon, M.J. Mad3p, a pseudosubstrate inhibitor of APCCdc20 in the spindle assembly checkpoint. Genes Dev. 21, 655–667 (2007).

    Article  CAS  Google Scholar 

  35. Sheff, M.A. & Thorn, K.S. Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast 21, 661–670 (2004).

    Article  CAS  Google Scholar 

  36. Passmore, L.A., Barford, D. & Harper, J.W. Purification and assay of the budding yeast anaphase-promoting complex. Methods Enzymol. 398, 195–219 (2005).

    Article  CAS  Google Scholar 

  37. Gieffers, C., Dube, P., Harris, J.R., Stark, H. & Peters, J.M. Three-dimensional structure of the anaphase-promoting complex. Mol. Cell 7, 907–913 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to I. Häcker (Max Planck Institute for Biophysical Chemistry, Göttingen) and M. Madalinski (IMP, Vienna) for technical assistance; J. Barrett (Zentrum für Molekulare Biologie, Heidelberg), J. Brunner (Eidgenössische Technische Hochschule Zürich), D. Finley (Harvard Medical School, Boston), U. Hoya (Friedrich-Alexander-Universität, Erlangen), D. Morgan (University of California, San Francisco), K. Nasmyth (University of Oxford), M. Solomon (Yale University) and W. Zachariae (Max Planck Institute of Molecular Cell Biology and Genetics, Dresden) for kindly providing yeast strains and reagents; and J. Barrett, J. Brunner and B. Martoglio (Eidgenössische Technische Hochschule Zürich) for advice on photo-cross-linking. Research in the laboratory of H.S. was supported by grants from the Federal Ministry of Education and Research, Germany, and from the Sixth Framework Programme of the European Union via the Integrated Project 3DRepertoire. Research in the laboratory of J.-M.P. is supported by Boehringer Ingelheim, the Vienna Spots of Excellence Programme and the Austrian Science Fund.

Author information

Authors and Affiliations

Authors

Contributions

H.S. and J.-M.P. planned and supervised the project. B.A.B., G.P., C.K. and F.H. designed the experiments. B.A.B. performed most of the photo-cross-linking and biochemical experiments on yeast APC/C. G.P. performed the experiments on substrate bound APC/C. M.G. and C.K. generated yeast strains and performed growth assays and yeast APC/C purifications. F.H. performed antibody labeling on human APC/C. P.D. performed EM. H.S. calculated and analyzed the 3D EM structures. B.A.B., G.P. and J.-M.P. wrote the paper.

Corresponding authors

Correspondence to Holger Stark or Jan-Michael Peters.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Supplementary Figures 1–5 and Supplementary Tables 1–5 (PDF 3974 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buschhorn, B., Petzold, G., Galova, M. et al. Substrate binding on the APC/C occurs between the coactivator Cdh1 and the processivity factor Doc1. Nat Struct Mol Biol 18, 6–13 (2011). https://doi.org/10.1038/nsmb.1979

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1979

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing