Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

On the structural basis of modal gating behavior in K+ channels

Abstract

Modal-gating shifts represent an effective regulatory mechanism by which ion channels control the extent and time course of ionic fluxes. Under steady-state conditions, the K+ channel KcsA shows three distinct gating modes, high-Po, low-Po and a high-frequency flicker mode, each with about an order of magnitude difference in their mean open times. Here we show that in the absence of C-type inactivation, mutations at the pore-helix position Glu71 unmask a series of kinetically distinct modes of gating in a side chain–specific way. These gating modes mirror those seen in wild-type channels and suggest that specific interactions in the side chain network surrounding the selectivity filter, in concert with ion occupancy, alter the relative stability of pre-existing conformational states of the pore. The present results highlight the key role of the selectivity filter in regulating modal gating behavior in K+ channels.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Modal gating behavior of WT KcsA.
Figure 2: Glu71 mutants stabilize individual gating modes in a side chain–specific way.
Figure 3: Kinetic behavior of Glu71 mutants.
Figure 4: Crystal structure of E71I.
Figure 5: Crystal structure of E71Q.
Figure 6: Underlying conformational dynamics of the selectivity filter and the fast gating kinetics.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Hille, B. Ion Channels of Excitable Membranes (Sinauer Associates Inc., 2001).

  2. Yellen, G. The moving parts of voltage-gated ion channels. Q. Rev. Biophys. 31, 239–295 (1998).

    Article  CAS  Google Scholar 

  3. Doyle, D.A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

    Article  CAS  Google Scholar 

  4. Kuo, A. et al. Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300, 1922–1926 (2003).

    Article  CAS  Google Scholar 

  5. Zhou, Y., Morais-Cabral, J.H., Kaufman, A. & MacKinnon, R. Chemistry of ion coordination and hydration revealed by a K+ channel–Fab complex at 2.0 A resolution. Nature 414, 43–48 (2001).

    Article  CAS  Google Scholar 

  6. Jiang, Y. et al. Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417, 515–522 (2002).

    Article  CAS  Google Scholar 

  7. Long, S.B., Campbell, E.B. & Mackinnon, R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309, 897–903 (2005).

    Article  CAS  Google Scholar 

  8. Long, S.B., Tao, X., Campbell, E.B. & MacKinnon, R. Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450, 376–382 (2007).

    Article  CAS  Google Scholar 

  9. Cuello, L.G., Jogini, V., Cortes, D.M. & Perozo, E. Crystal structure of open-inactivated KcsA and the mechanism of C-type inactivation in K+ channels. Nature 466, 203–208 (2010).

    Article  CAS  Google Scholar 

  10. Schoppa, N.E. & Sigworth, F.J. Activation of shaker potassium channels. I. Characterization of voltage-dependent transitions. J. Gen. Physiol. 111, 271–294 (1998).

    Article  CAS  Google Scholar 

  11. Cordero-Morales, J.F. et al. Molecular determinants of gating at the potassium-channel selectivity filter. Nat. Struct. Mol. Biol. 13, 311–318 (2006).

    Article  CAS  Google Scholar 

  12. Chakrapani, S., Cordero-Morales, J.F. & Perozo, E. A quantitative description of KcsA gating II: single-channel currents. J. Gen. Physiol. 130, 479–496 (2007).

    Article  CAS  Google Scholar 

  13. Zagotta, W.N., Hoshi, T. & Aldrich, R.W. Shaker potassium channel gating. III: Evaluation of kinetic models for activation. J. Gen. Physiol. 103, 321–362 (1994).

    Article  CAS  Google Scholar 

  14. Schrempf, H. et al. A prokaryotic potassium ion channel with two predicted transmembrane segments from Streptomyces lividans. EMBO J. 14, 5170–5178 (1995).

    Article  CAS  Google Scholar 

  15. Cuello, L.G., Romero, J.G., Cortes, D.M. & Perozo, E. pH-dependent gating in the Streptomyces lividans K+ channel. Biochemistry 37, 3229–3236 (1998).

    Article  CAS  Google Scholar 

  16. Chapman, M.L. & VanDongen, A.M. K channel subconductance levels result from heteromeric pore conformations. J. Gen. Physiol. 126, 87–103 (2005).

    Article  CAS  Google Scholar 

  17. Zheng, J. & Sigworth, F.J. Selectivity changes during activation of mutant Shaker potassium channels. J. Gen. Physiol. 110, 101–117 (1997).

    Article  CAS  Google Scholar 

  18. Blunck, R., Cordero-Morales, J.F., Cuello, L.G., Perozo, E. & Bezanilla, F. Detection of the opening of the bundle crossing in KcsA with fluorescence lifetime spectroscopy reveals the existence of two gates for ion conduction. J. Gen. Physiol. 128, 569–581 (2006).

    Article  CAS  Google Scholar 

  19. Chakrapani, S., Cordero-Morales, J.F. & Perozo, E. A quantitative description of KcsA gating I: macroscopic currents. J. Gen. Physiol. 130, 465–478 (2007).

    Article  CAS  Google Scholar 

  20. Pusch, M., Bertorello, L. & Conti, F. Gating and flickery block differentially affected by rubidium in homomeric KCNQ1 and heteromeric KCNQ1/KCNE1 potassium channels. Biophys. J. 78, 211–226 (2000).

    Article  CAS  Google Scholar 

  21. Demo, S.D. & Yellen, G. Ion effects on gating of the Ca2+-activated K+ channel correlate with occupancy of the pore. Biophys. J. 61, 639–648 (1992).

    Article  CAS  Google Scholar 

  22. LeMasurier, M., Heginbotham, L. & Miller, C. KcsA: it's a potassium channel. J. Gen. Physiol. 118, 303–314 (2001).

    Article  CAS  Google Scholar 

  23. Choe, H., Sackin, H. & Palmer, L.G. Gating properties of inward-rectifier potassium channels: effects of permeant ions. J. Membr. Biol. 184, 81–89 (2001).

    Article  CAS  Google Scholar 

  24. Lu, T., Wu, L., Xiao, J. & Yang, J. Permeant ion-dependent changes in gating of Kir2.1 inward rectifier potassium channels. J. Gen. Physiol. 118, 509–522 (2001).

    Article  CAS  Google Scholar 

  25. Lu, T. et al. Probing ion permeation and gating in a K+ channel with backbone mutations in the selectivity filter. Nat. Neurosci. 4, 239–246 (2001).

    Article  CAS  Google Scholar 

  26. Zhou, M. & MacKinnon, R. A mutant KcsA K+ channel with altered conduction properties and selectivity filter ion distribution. J. Mol. Biol. 338, 839–846 (2004).

    Article  CAS  Google Scholar 

  27. Haug, T., Olcese, R., Toro, L. & Stefani, E. Regulation of K+ flow by a ring of negative charges in the outer pore of BKCa channels. Part II: Neutralization of aspartate 292 reduces long channel openings and gating current slow component. J. Gen. Physiol. 124, 185–197 (2004).

    Article  CAS  Google Scholar 

  28. Proks, P., Capener, C.E., Jones, P. & Ashcroft, F.M. Mutations within the P-loop of Kir6.2 modulate the intraburst kinetics of the ATP-sensitive potassium channel. J. Gen. Physiol. 118, 341–353 (2001).

    Article  CAS  Google Scholar 

  29. Morais-Cabral, J.H., Zhou, Y. & MacKinnon, R. Energetic optimization of ion conduction rate by the K+ selectivity filter. Nature 414, 37–42 (2001).

    Article  CAS  Google Scholar 

  30. Dreyer, I., Michard, E., Lacombe, B. & Thibaud, J.B. A plant Shaker-like K+ channel switches between two distinct gating modes resulting in either inward-rectifying or 'leak' current. FEBS Lett. 505, 233–239 (2001).

    Article  CAS  Google Scholar 

  31. Singer-Lahat, D., Dascal, N. & Lotan, I. Modal behavior of the Kv1.1 channel conferred by the Kvβ1.1 subunit and its regulation by dephosphorylation of Kv1.1. Pflugers Arch. 439, 18–26 (1999).

    CAS  PubMed  Google Scholar 

  32. Cooper, E. & Shrier, A. Inactivation of A currents and A channels on rat nodose neurons in culture. J. Gen. Physiol. 94, 881–910 (1989).

    Article  CAS  Google Scholar 

  33. Armstrong, C.M. & Gilly, W.F. Fast and slow steps in the activation of sodium channels. J. Gen. Physiol. 74, 691–711 (1979).

    Article  CAS  Google Scholar 

  34. Howe, J.R. & Ritchie, J.M. Multiple kinetic components of sodium channel inactivation in rabbit Schwann cells. J. Physiol. (Lond.) 455, 529–566 (1992).

    Article  CAS  Google Scholar 

  35. Lenaeus, M.J., Vamvouka, M., Focia, P.J. & Gross, A. Structural basis of TEA blockade in a model potassium channel. Nat. Struct. Mol. Biol. 12, 454–459 (2005).

    Article  CAS  Google Scholar 

  36. Bockenhauer, D., Zilberberg, N. & Goldstein, S.A. KCNK2: reversible conversion of a hippocampal potassium leak into a voltage-dependent channel. Nat. Neurosci. 4, 486–491 (2001).

    Article  CAS  Google Scholar 

  37. Levin, G. et al. Phosphorylation of a K+ channel alpha subunit modulates the inactivation conferred by a beta subunit. Involvement of cytoskeleton. J. Biol. Chem. 271, 29321–29328 (1996).

    Article  CAS  Google Scholar 

  38. Cordero-Morales, J.F. et al. Molecular driving forces determining potassium channel slow inactivation. Nat. Struct. Mol. Biol. 14, 1062–1069 (2007).

    Article  CAS  Google Scholar 

  39. Capener, C.E., Proks, P., Ashcroft, F.M. & Sansom, M.S. Filter flexibility in a mammalian K channel: models and simulations of Kir6.2 mutants. Biophys. J. 84, 2345–2356 (2003).

    Article  CAS  Google Scholar 

  40. Domene, C., Klein, M.L., Branduardi, D., Gervasio, F.L. & Parrinello, M. Conformational changes and gating at the selectivity filter of potassium channels. J. Am. Chem. Soc. 130, 9474–9480 (2008).

    Article  CAS  Google Scholar 

  41. Bernèche, S. & Roux, B. Molecular dynamics of the KcsA K+ channel in a bilayer membrane. Biophys. J. 78, 2900–2917 (2000).

    Article  Google Scholar 

  42. Shrivastava, I.H. & Sansom, M.S. Simulations of ion permeation through a potassium channel: molecular dynamics of KcsA in a phospholipid bilayer. Biophys. J. 78, 557–570 (2000).

    Article  CAS  Google Scholar 

  43. Guidoni, L., Torre, V. & Carloni, P. Water and potassium dynamics inside the KcsA K+ channel. FEBS Lett. 477, 37–42 (2000).

    Article  CAS  Google Scholar 

  44. Bernèche, S. & Roux, B. A gate in the selectivity filter of potassium channels. Structure 13, 591–600 (2005).

    Article  Google Scholar 

  45. Nishida, M., Cadene, M., Chait, B.T. & MacKinnon, R. Crystal structure of a Kir3.1-prokaryotic Kir channel chimera. EMBO J. 26, 4005–4015 (2007).

    Article  CAS  Google Scholar 

  46. Delcour, A.H., Lipscombe, D. & Tsien, R.W. Multiple modes of N-type calcium channel activity distinguished by differences in gating kinetics. J. Neurosci. 13, 181–194 (1993).

    Article  CAS  Google Scholar 

  47. Luvisetto, S. et al. Modal gating of human CaV2.1 (P/Q-type) calcium channels: I. The slow and the fast gating modes and their modulation by beta subunits. J. Gen. Physiol. 124, 445–461 (2004).

    Article  CAS  Google Scholar 

  48. Yue, D.T., Herzig, S. & Marban, E. Beta-adrenergic stimulation of calcium channels occurs by potentiation of high-activity gating modes. Proc. Natl. Acad. Sci. USA 87, 753–757 (1990).

    Article  CAS  Google Scholar 

  49. McManus, O.B. & Magleby, K.L. Kinetic states and modes of single large-conductance calcium-activated potassium channels in cultured rat skeletal muscle. J. Physiol. (Lond.) 402, 79–120 (1988).

    Article  CAS  Google Scholar 

  50. Rothberg, B.S., Bello, R.A., Song, L. & Magleby, K.L. High Ca2+ concentrations induce a low activity mode and reveal Ca2+-independent long shut intervals in BK channels from rat muscle. J. Physiol. (Lond.) 493, 673–689 (1996).

    Article  CAS  Google Scholar 

  51. Auerbach, A. & Lingle, C.J. Heterogeneous kinetic properties of acetylcholine receptor channels in Xenopus myocytes. J. Physiol. (Lond.) 378, 119–140 (1986).

    Article  CAS  Google Scholar 

  52. Milone, M. et al. Mode switching kinetics produced by a naturally occurring mutation in the cytoplasmic loop of the human acetylcholine receptor epsilon subunit. Neuron 20, 575–588 (1998).

    Article  CAS  Google Scholar 

  53. Naranjo, D. & Brehm, P. Modal shifts in acetylcholine receptor channel gating confer subunit-dependent desensitization. Science 260, 1811–1814 (1993).

    Article  CAS  Google Scholar 

  54. Popescu, G. & Auerbach, A. Modal gating of NMDA receptors and the shape of their synaptic response. Nat. Neurosci. 6, 476–483 (2003).

    Article  CAS  Google Scholar 

  55. Patlak, J.B., Gration, K.A. & Usherwood, P.N. Single glutamate-activated channels in locust muscle. Nature 278, 643–645 (1979).

    Article  CAS  Google Scholar 

  56. Huganir, R.L., Delcour, A.H., Greengard, P. & Hess, G.P. Phosphorylation of the nicotinic acetylcholine receptor regulates its rate of desensitization. Nature 321, 774–776 (1986).

    Article  CAS  Google Scholar 

  57. Levy, D.I. & Deutsch, C. Recovery from C-type inactivation is modulated by extracellular potassium. Biophys. J. 70, 798–805 (1996).

    Article  CAS  Google Scholar 

  58. Qin, F., Auerbach, A. & Sachs, F. Estimating single-channel kinetic parameters from idealized patch-clamp data containing missed events. Biophys. J. 70, 264–280 (1996).

    Article  CAS  Google Scholar 

  59. Brooks, B.R. et al. CHARMM: A program for macromolecular energy, minimization and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983).

    Article  CAS  Google Scholar 

  60. Phillips, J.C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Bezanilla, L. Cuello, V. Vásquez and H. Raghuraman for insightful discussions; M. Wiener and M. Purdy for crystallographic data collection (for E71Q); the staff of the SER-CAT 22-ID and GM/CA-CAT 23-ID beamlines at the Advanced Photon Source, Argonne National Laboratory, for their invaluable assistance in data collection; R. MacKinnon (Rockefeller University) for providing the KcsA antibody hybridoma cell line; and the US National Center for Supercomputing Applications (NCSA) and the Laboratory Computing Resource Center (LCRC) at Argonne National Laboratory for computer time. This work was supported by US National Institutes of Health grants to E.P. (R01GM057846, U54GM087519) and B.R. (R01GM062342) and by an American Heart Association Postdoctoral Fellowship to S.C.

Author information

Authors and Affiliations

Authors

Contributions

S.C., J.F.C.-M. and E.P. designed the research. S.C. and J.F.C.-M. carried out electrophysiology measurements and kinetic analysis. D.M.C. made Fab preparations. J.F.C.-M. and D.M.C. crystallized the mutant proteins. V.J. determined and analyzed the structures. A.C.P. and B.R. did the computation analysis. S.C., J.F.C.-M. and E.P. analyzed the data and wrote the paper.

Corresponding author

Correspondence to Eduardo Perozo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 2955 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakrapani, S., Cordero-Morales, J., Jogini, V. et al. On the structural basis of modal gating behavior in K+ channels. Nat Struct Mol Biol 18, 67–74 (2011). https://doi.org/10.1038/nsmb.1968

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1968

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing