Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Three-dimensional structure and flexibility of a membrane-coating module of the nuclear pore complex

This article has been updated

Abstract

The nuclear pore complex mediates nucleocytoplasmic transport in all eukaryotes and is among the largest cellular assemblies of proteins, collectively known as nucleoporins. Nucleoporins are organized into distinct subcomplexes. We optimized the isolation of a putative membrane-coating subcomplex of the nuclear pore complex, the heptameric Nup84 complex, and analyzed its structure by EM. Our data confirmed the previously reported 'Y' shape. We discerned additional structural details, including specific hinge regions at which the particle shows great flexibility. We determined the three-dimensional structures of two conformers, mapped the localization of two nucleoporins within the subcomplex and docked known crystal structures into the EM maps. The free ends of the Y-shaped particle are formed by β-propellers; the connecting segments consist of α-solenoids. Notably, the same organizational principle is found in the clathrin triskelion, which may share a common evolutionary origin with the heptameric complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Purification and EM of the heptameric Nup84 complex.
Figure 2: Alignment, classification and averaging of particle images reveals structural details of the heptameric complex.
Figure 3: Heterogeneity of particle appearance.
Figure 4: Three-dimensional structures of the heptameric complex.
Figure 5: Mapping of nucleoporin localization.
Figure 6: Protein arrangement within the heptameric complex.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

Change history

  • 14 June 2009

    In the version of the supplementary information originally posted online, the captions for the Supplementary Movies were in the incorrect order. This has been corrected as of 14 June 2009.

References

  1. Lim, R.Y., Ullman, K.S. & Fahrenkrog, B. Biology and biophysics of the nuclear pore complex and its components. Int. Rev. Cell Mol. Biol. 267, 299–342 (2008).

    Article  CAS  Google Scholar 

  2. Beck, M. et al. Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science 306, 1387–1390 (2004).

    Article  CAS  Google Scholar 

  3. Beck, M., Lucić, V., Förster, F., Baumeister, W. & Medalia, O. Snapshots of nuclear pore complexes in action captured by cryo-electron tomography. Nature 449, 611–615 (2007).

    Article  CAS  Google Scholar 

  4. Melcák, I., Hoelz, A. & Blobel, G. Structure of Nup58/45 suggests flexible nuclear pore diameter by intermolecular sliding. Science 315, 1729–1732 (2007).

    Article  Google Scholar 

  5. Boehmer, T., Jeudy, S., Berke, I.C. & Schwartz, T.U. Structural and functional studies of Nup107/Nup133 interaction and its implications for the architecture of the nuclear pore complex. Mol. Cell 30, 721–731 (2008).

    Article  CAS  Google Scholar 

  6. Debler, E.W. et al. A fence-like coat for the nuclear pore membrane. Mol. Cell 32, 815–826 (2008).

    Article  CAS  Google Scholar 

  7. Glavy, J.S. et al. Cell-cycle-dependent phosphorylation of the nuclear pore Nup107–160 subcomplex. Proc. Natl. Acad. Sci. USA 104, 3811–3816 (2007).

    Article  CAS  Google Scholar 

  8. Belgareh, N. et al. An evolutionarily conserved NPC subcomplex, which redistributes in part to kinetochores in mammalian cells. J. Cell Biol. 154, 1147–1160 (2001).

    Article  CAS  Google Scholar 

  9. Loïodice, I. et al. The entire Nup107–160 complex, including three new members, is targeted as one entity to kinetochores in mitosis. Mol. Biol. Cell 15, 3333–3344 (2004).

    Article  Google Scholar 

  10. Walther, T.C. et al. The conserved Nup107–160 complex is critical for nuclear pore complex assembly. Cell 113, 195–206 (2003).

    Article  CAS  Google Scholar 

  11. Harel, A. et al. Removal of a single pore subcomplex results in vertebrate nuclei devoid of nuclear pores. Mol. Cell 11, 853–864 (2003).

    Article  CAS  Google Scholar 

  12. D'Angelo, M.A., Anderson, D.J., Richard, E. & Hetzer, M.W. Nuclear pores form de novo from both sides of the nuclear envelope. Science 312, 440–443 (2006).

    Article  CAS  Google Scholar 

  13. Orjalo, A.V. et al. The Nup107–160 nucleoporin complex is required for correct bipolar spindle assembly. Mol. Biol. Cell 17, 3806–3818 (2006).

    Article  CAS  Google Scholar 

  14. Zuccolo, M. et al. The human Nup107–160 nuclear pore subcomplex contributes to proper kinetochore functions. EMBO J. 26, 1853–1864 (2007).

    Article  CAS  Google Scholar 

  15. Siniossoglou, S. et al. Structure and assembly of the Nup84p complex. J. Cell Biol. 149, 41–54 (2000).

    Article  CAS  Google Scholar 

  16. Lutzmann, M., Kunze, R., Buerer, A., Aebi, U. & Hurt, E. Modular self-assembly of a Y-shaped multiprotein complex from seven nucleoporins. EMBO J. 21, 387–397 (2002).

    Article  CAS  Google Scholar 

  17. Brohawn, S.G., Leksa, N.C., Spear, E.D., Rajashankar, K.R. & Schwartz, T.U. Structural evidence for common ancestry of the nuclear pore complex and vesicle coats. Science 322, 1369–1373 (2008).

    Article  CAS  Google Scholar 

  18. Hsia, K.C., Stavropoulos, P., Blobel, G. & Hoelz, A. Architecture of a coat for the nuclear pore membrane. Cell 131, 1313–1326 (2007).

    Article  CAS  Google Scholar 

  19. Devos, D. et al. Components of coated vesicles and nuclear pore complexes share a common molecular architecture. PLoS Biol. 2, e380 (2004).

    Article  Google Scholar 

  20. Blobel, G. Intracellular protein topogenesis. Proc. Natl. Acad. Sci. USA 77, 1496–1500 (1980).

    Article  CAS  Google Scholar 

  21. Rout, M.P. et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol. 148, 635–652 (2000).

    Article  CAS  Google Scholar 

  22. Drin, G. et al. A general amphipathic alpha-helical motif for sensing membrane curvature. Nat. Struct. Mol. Biol. 14, 138–146 (2007).

    Article  CAS  Google Scholar 

  23. Radermacher, M., Wagenknecht, T., Verschoor, A. & Frank, J. A new 3-D reconstruction scheme applied to the 50S ribosomal subunit of E. coli. J. Microsc. 141, RP1–RP2 (1986).

    Article  CAS  Google Scholar 

  24. Siniossoglou, S. et al. A novel complex of nucleoporins, which includes Sec13p and a Sec13p homolog, is essential for normal nuclear pores. Cell 84, 265–275 (1996).

    Article  CAS  Google Scholar 

  25. Cristea, I.M., Williams, R., Chait, B.T. & Rout, M.P. Fluorescent proteins as proteomic probes. Mol. Cell. Proteomics 4, 1933–1941 (2005).

    Article  CAS  Google Scholar 

  26. Lutzmann, M. et al. Reconstitution of Nup157 and Nup145N into the Nup84 complex. J. Biol. Chem. 280, 18442–18451 (2005).

    Article  CAS  Google Scholar 

  27. Penczek, P., Radermacher, M. & Frank, J. Three-dimensional reconstruction of single particles embedded in ice. Ultramicroscopy 40, 33–53 (1992).

    Article  CAS  Google Scholar 

  28. van Heel, M. & Frank, J. Use of multivariate statistics in analysing the images of biological macromolecules. Ultramicroscopy 6, 187–194 (1981).

    CAS  PubMed  Google Scholar 

  29. Gilbert, P. Iterative methods for the three-dimensional reconstruction of an object from projections. J. Theor. Biol. 36, 105–117 (1972).

    Article  CAS  Google Scholar 

  30. Berke, I.C., Boehmer, T., Blobel, G. & Schwartz, T.U. Structural and functional analysis of Nup133 domains reveals modular building blocks of the nuclear pore complex. J. Cell Biol. 167, 591–597 (2004).

    Article  CAS  Google Scholar 

  31. Fotin, A. et al. Molecular model for a complete clathrin lattice from electron cryomicroscopy. Nature 432, 573–579 (2004).

    Article  CAS  Google Scholar 

  32. Paoli, M. Protein folds propelled by diversity. Prog. Biophys. Mol. Biol. 76, 103–130 (2001).

    Article  CAS  Google Scholar 

  33. Fath, S., Mancias, J.D., Bi, X. & Goldberg, J. Structure and organization of coat proteins in the COPII cage. Cell 129, 1325–1336 (2007).

    Article  CAS  Google Scholar 

  34. Ferguson, M.L. et al. Clathrin triskelia show evidence of molecular flexibility. Biophys. J. 95, 1945–1955 (2008).

    Article  CAS  Google Scholar 

  35. Akey, C.W. Structural plasticity of the nuclear pore complex. J. Mol. Biol. 248, 273–293 (1995).

    CAS  PubMed  Google Scholar 

  36. Chernomordik, L.V. & Kozlov, M.M. Mechanics of membrane fusion. Nat. Struct. Mol. Biol. 15, 675–683 (2008).

    Article  CAS  Google Scholar 

  37. Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature 425, 737–741 (2003).

    Article  CAS  Google Scholar 

  38. Sheff, M.A. & Thorn, K.S. Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast 21, 661–670 (2004).

    Article  CAS  Google Scholar 

  39. Mastronarde, D.N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    Article  Google Scholar 

  40. Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996).

    Article  CAS  Google Scholar 

  41. Ludtke, S.J., Baldwin, P.R. & Chiu, W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999).

    Article  CAS  Google Scholar 

  42. Wagenknecht, T., Frank, J., Boublik, M., Nurse, K. & Ofengand, J. Direct localization of the tRNA–anticodon interaction site on the Escherichia coli 30 S ribosomal subunit by electron microscopy and computerized image averaging. J. Mol. Biol. 203, 753–760 (1988).

    Article  CAS  Google Scholar 

  43. Pettersen, E.F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  Google Scholar 

  44. Chacón, P. & Wriggers, W. Multi-resolution contour-based fitting of macromolecular structures. J. Mol. Biol. 317, 375–384 (2002).

    Article  Google Scholar 

  45. Wriggers, W., Milligan, R.A. & McCammon, J.A. Situs: a package for docking crystal structures into low-resolution maps from electron microscopy. J. Struct. Biol. 125, 185–195 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Diaz-Avalos, W. Rice and other staff at the New York Structural Biology Center for their support and stimulating discussions; D. King (Howard Hughes Medical Institute Mass Spectrometry Facility) for MS; E. Debler, V. Nagy, C. Atkinson and A. Mattheyses for critical reading of the manuscript; and D. Andor, K.-C. Hsia and other members of the Blobel laboratory for helpful discussions. M.K. was supported by the Howard Hughes Medical Institute Predoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Blobel.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Discussion (PDF 10037 kb)

Supplementary Movie 1

Overlay of final map 1 (orange) and map 1 reconstructed from the 25% best matching particles (purple), see Supplementary Discussion. (MOV 3846 kb)

Supplementary Movie 2

Overlay of final map 2 (orange) and map 2 reconstructed from the 25% best matching particles (purple), see Supplementary Discussion. (MOV 3858 kb)

Supplementary Movie 3

Crystal structures docked into map 1. The color code is the same as in Figure 6. (MOV 2028 kb)

Supplementary Movie 4

Crystal structures docked into map 2. The color code is the same as in Figure 6. (MOV 1992 kb)

Supplementary Movie 5

Crystal structures docked into map 2, detail. Blue and red spheres mark the N and C termini, respectively, which belong to crystal structures of partial proteins, in order to indicate were the protein domains that are absent from the crystal structure would originate. (MOV 2947 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kampmann, M., Blobel, G. Three-dimensional structure and flexibility of a membrane-coating module of the nuclear pore complex. Nat Struct Mol Biol 16, 782–788 (2009). https://doi.org/10.1038/nsmb.1618

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1618

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing