Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular mimicry of SUMO promotes DNA repair

Abstract

Rad60 family members contain functionally enigmatic, integral SUMO-like domains (SLDs). We show here that despite their divergence from SUMO, each Rad60 SLD interacts with a subset of SUMO pathway enzymes: SLD2 specifically binds the SUMO E2 conjugating enzyme (Ubc9), whereas SLD1 binds the SUMO E1 (Fub2, also called Uba2) activating and E3 (Pli1, also called Siz1 and Siz2) specificity enzymes. The molecular basis of this selectivity is revealed by our 0.97-Å resolution crystal structure of Rad60 SLD2, which shows that apart from the conserved non-substrate SUMO:Ubc9 interface, the surface features of SLD2 are distinct from those of SUMO. Abrogation of the SLD2:Ubc9 FEG motif–dependent interaction results in hypersensitivity to genotoxic stress and an increase in spontaneous recombination associated with aberrant replication forks. Our results provide a mechanistic basis for the near-synonymous roles of Rad60 and SUMO in survival of genotoxic stress and suggest unprecedented DNA-damage-response functions for SLDs in regulating sumoylation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rad60 SLDs interact with distinct components of the sumoylation machinery.
Figure 2: Rad60 SLD2 crystal structure.
Figure 3: Analysis of the Rad60 SLD2:Ubc9 interface.
Figure 4: The rad60E380R mutant is sensitive to genotoxic stress.
Figure 5: Genetic interactions between rad60E380R and mutants in the homologous recombination repair or sumoylation pathways.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Friedberg, E.C. et al. DNA Repair and Mutagenesis (American Society for Microbiology Press, Washington, DC, 2006).

    Google Scholar 

  2. Lambert, S. & Carr, A.M. Checkpoint responses to replication fork barriers. Biochimie 87, 591–602 (2005).

    Article  CAS  Google Scholar 

  3. Tourriere, H. & Pasero, P. Maintenance of fork integrity at damaged DNA and natural pause sites. DNA Repair (Amst.) 6, 900–913 (2007).

    Article  CAS  Google Scholar 

  4. Branzei, D. & Foiani, M. Regulation of DNA repair throughout the cell cycle. Nat. Rev. Mol. Cell Biol. 9, 297–308 (2008).

    Article  CAS  Google Scholar 

  5. Branzei, D. et al. Ubc9- and mms21-mediated sumoylation counteracts recombinogenic events at damaged replication forks. Cell 127, 509–522 (2006).

    Article  CAS  Google Scholar 

  6. Ulrich, H.D. Mutual interactions between the SUMO and ubiquitin systems: a plea of no contest. Trends Cell Biol. 15, 525–532 (2005).

    Article  CAS  Google Scholar 

  7. Kerscher, O., Felberbaum, R. & Hochstrasser, M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell Dev. Biol. 22, 159–180 (2006).

    Article  CAS  Google Scholar 

  8. Hartmann-Petersen, R. & Gordon, C. Integral UBL domain proteins: a family of proteasome interacting proteins. Semin. Cell Dev. Biol. 15, 247–259 (2004).

    Article  CAS  Google Scholar 

  9. Boddy, M.N. et al. Replication checkpoint kinase Cds1 regulates recombinational repair protein Rad60. Mol. Cell. Biol. 23, 5939–5946 (2003).

    Article  CAS  Google Scholar 

  10. Morishita, T., Tsutsui, Y., Iwasaki, H. & Shinagawa, H. The Schizosaccharomyces pombe rad60 gene is essential for repairing double-strand DNA breaks spontaneously occurring during replication and induced by DNA-damaging agents. Mol. Cell. Biol. 22, 3537–3548 (2002).

    Article  CAS  Google Scholar 

  11. Raffa, G.D., Wohlschlegel, J., Yates, J.R. III & Boddy, M.N. SUMO-binding motifs mediate the Rad60-dependent response to replicative stress and self-association. J. Biol. Chem. 281, 27973–27981 (2006).

    Article  CAS  Google Scholar 

  12. Andrews, E.A. et al. Nse2, a component of the Smc5–6 complex, is a SUMO ligase required for the response to DNA damage. Mol. Cell. Biol. 25, 185–196 (2005).

    Article  CAS  Google Scholar 

  13. Miyabe, I., Morishita, T., Hishida, T., Yonei, S. & Shinagawa, H. Rhp51-dependent recombination intermediates that do not generate checkpoint signal are accumulated in Schizosaccharomyces pombe rad60 and smc5/6 mutants after release from replication arrest. Mol. Cell. Biol. 26, 343–353 (2006).

    Article  CAS  Google Scholar 

  14. Pebernard, S., Wohlschlegel, J., McDonald, W.H., Yates, J.R. III & Boddy, M.N. The Nse5-Nse6 dimer mediates DNA repair roles of the Smc5-Smc6 complex. Mol. Cell. Biol. 26, 1617–1630 (2006).

    Article  CAS  Google Scholar 

  15. Novatchkova, M., Bachmair, A., Eisenhaber, B. & Eisenhaber, F. Proteins with two SUMO-like domains in chromatin-associated complexes: the RENi (Rad60-Esc2–NIP45) family. BMC Bioinformatics 6, 22 (2005).

    Article  Google Scholar 

  16. Dhillon, N. & Kamakaka, R.T. A histone variant, Htz1p, and a Sir1p-like protein, Esc2p, mediate silencing at HMR. Mol. Cell 6, 769–780 (2000).

    Article  CAS  Google Scholar 

  17. Cuperus, G. & Shore, D. Restoration of silencing in Saccharomyces cerevisiae by tethering of a novel Sir2-interacting protein, Esc8. Genetics 162, 633–645 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ohya, T., Arai, H., Kubota, Y., Shinagawa, H. & Hishida, T. A SUMO-like domain protein, Esc2, is required for genome integrity and sister chromatid cohesion in Saccharomyces cerevisiae. Genetics 180, 41–50 (2008).

    Article  CAS  Google Scholar 

  19. Hodge, M.R. et al. NF-AT-driven interleukin-4 transcription potentiated by NIP45. Science 274, 1903–1905 (1996).

    Article  CAS  Google Scholar 

  20. Mowen, K.A., Schurter, B.T., Fathman, J.W., David, M. & Glimcher, L.H. Arginine methylation of NIP45 modulates cytokine gene expression in effector T lymphocytes. Mol. Cell 15, 559–571 (2004).

    Article  CAS  Google Scholar 

  21. Prudden, J. et al. SUMO-targeted ubiquitin ligases in genome stability. EMBO J. 26, 4089–4101 (2007).

    Article  CAS  Google Scholar 

  22. Knipscheer, P., van Dijk, W.J., Olsen, J.V., Mann, M. & Sixma, T.K. Noncovalent interaction between Ubc9 and SUMO promotes SUMO chain formation. EMBO J. 26, 2797–2807 (2007).

    Article  CAS  Google Scholar 

  23. Capili, A.D. & Lima, C.D. Structure and analysis of a complex between SUMO and Ubc9 illustrates features of a conserved E2-Ubl interaction. J. Mol. Biol. 369, 608–618 (2007).

    Article  CAS  Google Scholar 

  24. Duda, D.M. et al. Structure of a SUMO-binding-motif mimic bound to Smt3p-Ubc9p: conservation of a non-covalent ubiquitin-like protein-E2 complex as a platform for selective interactions within a SUMO pathway. J. Mol. Biol. 369, 619–630 (2007).

    Article  CAS  Google Scholar 

  25. Tatham, M.H. et al. Role of an N-terminal site of Ubc9 in SUMO-1, -2, and -3 binding and conjugation. Biochemistry 42, 9959–9969 (2003).

    Article  CAS  Google Scholar 

  26. Holm, L. & Sander, C. Touring protein fold space with Dali/FSSP. Nucleic Acids Res. 26, 316–319 (1998).

    Article  CAS  Google Scholar 

  27. Lois, L.M. & Lima, C.D. Structures of the SUMO E1 provide mechanistic insights into SUMO activation and E2 recruitment to E1. EMBO J. 24, 439–451 (2005).

    Article  CAS  Google Scholar 

  28. Kerscher, O. SUMO junction—what's your function? New insights through SUMO-interacting motifs. EMBO Rep. 8, 550–555 (2007).

    Article  CAS  Google Scholar 

  29. Sharma, S., Doherty, K.M. & Brosh, R.M. Jr. Mechanisms of RecQ helicases in pathways of DNA metabolism and maintenance of genomic stability. Biochem. J. 398, 319–337 (2006).

    Article  CAS  Google Scholar 

  30. Boddy, M.N. et al. Mus81-Eme1 are essential components of a Holliday junction resolvase. Cell 107, 537–548 (2001).

    Article  CAS  Google Scholar 

  31. Boddy, M.N. et al. Damage tolerance protein Mus81 associates with the FHA1 domain of checkpoint kinase Cds1. Mol. Cell. Biol. 20, 8758–8766 (2000).

    Article  CAS  Google Scholar 

  32. Doe, C.L., Ahn, J.S., Dixon, J. & Whitby, M.C. Mus81-Eme1 and Rqh1 involvement in processing stalled and collapsed replication forks. J. Biol. Chem. 277, 32753–32759 (2002).

    Article  CAS  Google Scholar 

  33. Roseaulin, L. et al. Mus81 is essential for sister chromatid recombination at broken replication forks. EMBO J. 27, 1378–1387 (2008).

    Article  CAS  Google Scholar 

  34. Xhemalce, B. et al. Role of SUMO in the dynamics of telomere maintenance in fission yeast. Proc. Natl. Acad. Sci. USA 104, 893–898 (2007).

    Article  CAS  Google Scholar 

  35. Xhemalce, B., Seeler, J.S., Thon, G., Dejean, A. & Arcangioli, B. Role of the fission yeast SUMO E3 ligase Pli1p in centromere and telomere maintenance. EMBO J. 23, 3844–3853 (2004).

    Article  CAS  Google Scholar 

  36. Perry, J.J., Tainer, J.A. & Boddy, M.N. A SIM-ultaneous role for SUMO and ubiquitin. Trends Biochem. Sci. 33, 201–208 (2008).

    Article  CAS  Google Scholar 

  37. Bylebyl, G.R., Belichenko, I. & Johnson, E.S. The SUMO isopeptidase Ulp2 prevents accumulation of SUMO chains in yeast. J. Biol. Chem. 278, 44113–44120 (2003).

    Article  CAS  Google Scholar 

  38. Kosoy, A., Calonge, T.M., Outwin, E.A. & O'Connell, M.J. Fission yeast Rnf4 homologs are required for DNA repair. J. Biol. Chem. 282, 20388–20394 (2007).

    Article  CAS  Google Scholar 

  39. Chang, Y.G. et al. Different roles for two ubiquitin-like domains of ISG15 in protein modification. J. Biol. Chem. 283, 13370–13377 (2008).

    Article  CAS  Google Scholar 

  40. Meulmeester, E., Kunze, M., Hsiao, H.H., Urlaub, H. & Melchior, F. Mechanism and consequences for paralog-specific sumoylation of ubiquitin-specific protease 25. Mol. Cell 30, 610–619 (2008).

    Article  CAS  Google Scholar 

  41. Zhu, J. et al. Small ubiquitin-related modifier (SUMO) binding determines substrate recognition and paralog-selective SUMO modification. J. Biol. Chem. 283, 29405–29415 (2008).

    Article  CAS  Google Scholar 

  42. Fallon, L. et al. A regulated interaction with the UIM protein Eps15 implicates parkin in EGF receptor trafficking and PI(3)K-Akt signalling. Nat. Cell Biol. 8, 834–842 (2006).

    Article  CAS  Google Scholar 

  43. Hoeller, D. et al. E3-independent monoubiquitination of ubiquitin-binding proteins. Mol. Cell 26, 891–898 (2007).

    Article  CAS  Google Scholar 

  44. Moreno, S., Klar, A. & Nurse, P. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol. 194, 795–823 (1991).

    Article  CAS  Google Scholar 

  45. Bahler, J. et al. Heterologous modules for efficient and versatile PCR-based gene targetting in Schizosaccharomyces pombe. Yeast 14, 943–951 (1998).

    Article  CAS  Google Scholar 

  46. Luft, J.R. et al. A deliberate approach to screening for initial crystallization conditions of biological macromolecules. J. Struct. Biol. 142, 170–179 (2003).

    Article  CAS  Google Scholar 

  47. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. in Macromolecular Crystallography. Vol. 276 (eds. Sweet, R.M. & Carter, C.W., Jr.) 307–326 (Quid Ltd., Hove, UK, 1997).

    Article  CAS  Google Scholar 

  48. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Cryst. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  49. McRee, D.E. XtalView/Xfit—a versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol. 125, 156–165 (1999).

    Article  CAS  Google Scholar 

  50. Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    Article  CAS  Google Scholar 

  51. Davis, I.W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).

    Article  Google Scholar 

  52. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  53. Bruns, C.M., Hubatsch, I., Ridderstrom, M., Mannervik, B. & Tainer, J.A. Human glutathione transferase A4–4 crystal structures and mutagenesis reveal the basis of high catalytic efficiency with toxic lipid peroxidation products. J. Mol. Biol. 288, 427–439 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Arcangioli (Institut Pasteur, Paris), P. Russell (TSRI, La Jolla, California, USA), S. Pebernard (TSRI) and G. Raffa (Università di Roma La Sapienza, Rome) for generously providing fission yeast strains and additional reagents and The Scripps Cell Cycle Group for support and encouragement. This study was funded in part by US National Institutes of Health grants GM068608 and GM081840 awarded to M.N.B. and CA104660 to J.A.T.

Author information

Authors and Affiliations

Authors

Contributions

J.P. conducted the yeast genetics studies, yeast in vivo analyses and in vitro pulldowns and aided protein purification and crystallization experiments. J.J.P.P. conducted protein purification, crystallization, data collection and structural refinement studies and assisted in manuscript preparation. A.S.A. successfully developed and used a high-throughput molecular replacement method for providing phasing data for Rad60 SLD2. J.A.T. and M.N.B. assisted in experimental design and manuscript preparation.

Corresponding authors

Correspondence to John A Tainer or Michael N Boddy.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Table 1 (PDF 14274 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prudden, J., Perry, J., Arvai, A. et al. Molecular mimicry of SUMO promotes DNA repair. Nat Struct Mol Biol 16, 509–516 (2009). https://doi.org/10.1038/nsmb.1582

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1582

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing