Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Recognition of the bacterial second messenger cyclic diguanylate by its cognate riboswitch

Abstract

The cyclic diguanylate (bis-(3′-5′)-cyclic dimeric guanosine monophosphate, c-di-GMP) riboswitch is the first known example of a gene-regulatory RNA that binds a second messenger. c-di-GMP is widely used by bacteria to regulate processes ranging from biofilm formation to the expression of virulence genes. The cocrystal structure of the c-di-GMP responsive GEMM riboswitch upstream of the tfoX gene of Vibrio cholerae reveals the second messenger binding the RNA at a three-helix junction. The two-fold symmetric second messenger is recognized asymmetrically by the monomeric riboswitch using canonical and noncanonical base-pairing as well as intercalation. These interactions explain how the RNA discriminates against cyclic diadenylate (c-di-AMP), a putative bacterial second messenger. Small-angle X-ray scattering and biochemical analyses indicate that the RNA undergoes compaction and large-scale structural rearrangement in response to ligand binding, consistent with organization of the core three-helix junction of the riboswitch concomitant with binding of c-di-GMP.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure of the c-di-GMP riboswitch.
Figure 2: Specific binding of c-di-GMP.
Figure 3: c-di-GMP- and Mg2+-induced size and shape changes of the riboswitch, monitored by SAXS.
Figure 4: Global rearrangement of the riboswitch induced by c-di-GMP binding.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Jenal, U. & Malone, J. Mechanisms of cyclic-di-GMP signaling in bacteria. Annu. Rev. Genet. 40, 385–407 (2006).

    Article  CAS  Google Scholar 

  2. Tamayo, R., Pratt, J.T. & Camilli, A. Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu. Rev. Microbiol. 61, 131–148 (2007).

    Article  CAS  Google Scholar 

  3. Wolfe, A. & Visick, K. Get the message out: cyclic-di-GMP regulates multiple levels of flagellum-based motility. J. Bacteriol. 190, 463–475 (2008).

    Article  CAS  Google Scholar 

  4. Pesavento, C. & Hengge, R. Bacterial nucleotide-based second messengers. Curr. Opin. Microbiol. 12, 170–176 (2009).

    Article  CAS  Google Scholar 

  5. Weinberg, Z. et al. Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline. Nucleic Acids Res. 35, 4809–4819 (2007).

    Article  CAS  Google Scholar 

  6. Sudarsan, N. et al. Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321, 411–413 (2008).

    Article  CAS  Google Scholar 

  7. Xiao, H., Edwards, T.E. & Ferré-D'Amaré, A.R. Structural basis for specific, high-affinity tetracycline binding by an in vitro evolved aptamer and artificial riboswitch. Chem. Biol. 15, 1125–1137 (2008).

    Article  CAS  Google Scholar 

  8. Ferré-D'Amaré, A.R. & Doudna, J.A. Crystallization and structure determination of a hepatitis delta virus ribozyme: use of the RNA-binding protein U1A as a crystallization module. J. Mol. Biol. 295, 541–556 (2000).

    Article  Google Scholar 

  9. Oubridge, C., Ito, N., Evans, P.R., Teo, C.-H. & Nagai, K. Crystal structure at 1.92Å resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature 372, 432–438 (1994).

    Article  CAS  Google Scholar 

  10. Robertson, M.P. & Scott, W.G. The structural basis of ribozyme-catalyzed RNA assembly. Science 315, 1549–1553 (2007).

    Article  CAS  Google Scholar 

  11. Xiao, H., Murakami, H., Suga, H. & Ferré-D'Amaré, A.R. Structural basis of specific tRNA aminoacylation by a small in vitro selected ribozyme. Nature 454, 358–361 (2008).

    Article  CAS  Google Scholar 

  12. Klein, D., Edwards, T. & Ferré-D'Amaré, A. Cocrystal structure of a class I preQ1 riboswitch reveals a pseudoknot recognizing an essential hypermodified nucleobase. Nat. Struct. Mol. Biol. 16, 343–344 (2009).

    Article  CAS  Google Scholar 

  13. Robertson, M.P. & Scott, W.G. A general method for phasing novel complex RNA crystal structures without heavy-atom derivatives. Acta Crystallogr D 64, 738–744 (2008).

    Article  CAS  Google Scholar 

  14. Rupert, P.B. & Ferré-D'Amaré, A.R. Crystal structure of a hairpin ribozyme-inhibitor complex with implications for catalysis. Nature 410, 780–786 (2001).

    Article  CAS  Google Scholar 

  15. Ferré-D'Amaré, A.R. The hairpin ribozyme. Biopolymers 73, 71–78 (2004).

    Article  Google Scholar 

  16. Lipfert, J. & Doniach, S. Small-angle X-ray scattering from RNA, proteins, and protein complexes. Annu. Rev. Biophys. Biomol. Struct. 36, 307–327 (2007).

    Article  CAS  Google Scholar 

  17. Baird, N., Westhof, E., Qin, H., Pan, T. & Sosnick, T. Structure of a folding intermediate reveals the interplay between core and peripheral elements in RNA folding. J. Mol. Biol. 352, 712–722 (2005).

    Article  CAS  Google Scholar 

  18. Ehresmann, C. et al. Probing the structure of RNAs in solution. Nucleic Acids Res. 15, 9109–9128 (1987).

    Article  CAS  Google Scholar 

  19. Dock-Bregeon, A.C., Garcia, A., Giegé, R. & Moras, D. The contacts of yeast tRNA(Ser) with seryl-tRNA synthetase studied by footprinting experiments. Eur. J. Biochem. 188, 283–290 (1990).

    Article  CAS  Google Scholar 

  20. Mei, H.Y. et al. Inhibitors of protein-RNA complexation that target the RNA: specific recognition of human immunodeficiency virus type 1 TAR RNA by small organic molecules. Biochemistry 37, 14204–14212 (1998).

    Article  CAS  Google Scholar 

  21. Hallegger, M., Taschner, A. & Jantsch, M.F. RNA aptamers binding the double-stranded RNA-binding domain. RNA 12, 1993–2004 (2006).

    Article  CAS  Google Scholar 

  22. Pouch-Pélissier, M.N. et al. SINE RNA induces severe developmental defects in Arabidopsis thaliana and interacts with HYL1 (DRB1), a key member of the DCL1 complex. PLoS Genet. 4, e1000096 (2008).

    Article  Google Scholar 

  23. Savochkina, L., Alekseenkova, V., Belyanko, T., Dobrynina, N. & Beabealashvilli, R. RNA protections from RNase V1 due to RNA structure alone. BMC Res. Notes 1, 15 (2008).

    Article  Google Scholar 

  24. Esakova, O., Perederina, A., Quan, C., Schmitt, M.E. & Krasilnikov, A.S. Footprinting analysis demonstrates extensive similarity between eukaryotic RNase P and RNase MRP holoenzymes. RNA 14, 1558–1567 (2008).

    Article  CAS  Google Scholar 

  25. Batey, R.T., Gilbert, S.D. & Montange, R.K. Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature 432, 411–415 (2004).

    Article  CAS  Google Scholar 

  26. Serganov, A. et al. Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs. Chem. Biol. 11, 1729–1741 (2004).

    Article  CAS  Google Scholar 

  27. Witte, G., Hartung, S., Büttner, K. & Hopfner, K.P. Structural biochemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates. Mol. Cell 30, 167–178 (2008).

    Article  CAS  Google Scholar 

  28. Edwards, T.E. & Ferré-D'Amaré, A.R. Crystal structures of the thi-box riboswitch bound to thiamine pyrophosphate analogs reveal adaptive RNA-small molecule recognition. Structure 14, 1459–1468 (2006).

    Article  CAS  Google Scholar 

  29. Gilbert, S.D., Reyes, F.E., Edwards, A.L. & Batey, R.T. Adaptive ligand binding by the purine riboswitch in the recognition of guanine and adenine analogs. Structure 17, 857–868 (2009).

    Article  CAS  Google Scholar 

  30. Collins, J.A., Irnov, I., Baker, S. & Winkler, W.C. Mechanism of mRNA destabilization by the glmS ribozyme. Genes Dev. 21, 3356–3368 (2007).

    Article  CAS  Google Scholar 

  31. Klein, D.J., Been, M.D. & Ferré-D'Amaré, A.R. Essential role of an active-site guanine in glmS ribozyme catalysis. J. Am. Chem. Soc. 129, 14858–14859 (2007).

    Article  CAS  Google Scholar 

  32. Edwards, T.E., Klein, D.J. & Ferré-D'Amaré, A.R. Riboswitches: small-molecule recognition by gene regulatory RNAs. Curr. Opin. Struct. Biol. 17, 273–279 (2007).

    Article  CAS  Google Scholar 

  33. Henkin, T. Riboswitch RNAs: using RNA to sense cellular metabolism. Genes Dev. 22, 3383–3390 (2008).

    Article  CAS  Google Scholar 

  34. Serganov, A. The long and the short of riboswitches. Curr. Opin. Struct. Biol. 19, 251–259 (2009).

    Article  CAS  Google Scholar 

  35. Lipfert, J. et al. Structural transitions and thermodynamics of a glycine-dependent riboswitch from Vibrio cholerae. J. Mol. Biol. 365, 1393–1406 (2007).

    Article  CAS  Google Scholar 

  36. Serganov, A., Huang, L. & Patel, D. Structural insights into amino acid binding and gene control by a lysine riboswitch. Nature 455, 1263–1267 (2008).

    Article  CAS  Google Scholar 

  37. Garst, A.D., Héroux, A., Rambo, R.P. & Batey, R.T. Crystal structure of the lysine riboswitch regulatory mRNA element. J. Biol. Chem. 283, 22347–22351 (2008).

    Article  CAS  Google Scholar 

  38. Mulhbacher, J. & Lafontaine, D.A. Ligand recognition determinants of guanine riboswitches. Nucleic Acids Res. 35, 5568–5580 (2007).

    Article  CAS  Google Scholar 

  39. Tomsic, J., Mcdaniel, B., Grundy, F. & Henkin, T. Natural variability in S-adenosylmethionine (SAM)-dependent riboswitches: S-box elements in Bacillus subtilis exhibit differential sensitivity to SAM in vivo and in vitro. J. Bacteriol. 190, 823–833 (2008).

    Article  CAS  Google Scholar 

  40. Wickiser, J.K., Cheah, M.T., Breaker, R.R. & Crothers, D.M. The kinetics of ligand binding by an adenine-sensing riboswitch. Biochemistry 44, 13404–13414 (2005).

    Article  CAS  Google Scholar 

  41. Wickiser, J.K., Winkler, W.C., Breaker, R.R. & Crothers, D.M. The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch. Mol. Cell 18, 49–60 (2005).

    Article  CAS  Google Scholar 

  42. Brünger, A.T. et al. Crystallography and NMR system: a new software system for macromolecular structure determination. Acta Crystallogr D 54, 905–921 (1998).

    Article  Google Scholar 

  43. Leontis, N.B. & Westhof, E. Geometric nomenclature and classification of RNA base pairs. RNA 7, 499–512 (2001).

    Article  CAS  Google Scholar 

  44. Ferré-D'Amaré, A.R. & Doudna, J.A. Use of cis- and trans-ribozymes to remove 5′ and 3′ heterogeneities from milligrams of in vitro transcribed RNA. Nucleic Acids Res. 24, 977–978 (1996).

    Article  Google Scholar 

  45. Rupert, P.B. & Ferré-D'Amaré, A.R. Crystallization of the hairpin ribozyme: illustrative protocols. Methods Mol. Biol. 252, 303–311 (2004).

    CAS  PubMed  Google Scholar 

  46. Heras, B. & Martin, J.L. Post-crystallization treatments for improving diffraction quality of protein crystals. Acta Crystallogr D 61, 1173–1180 (2005).

    Article  Google Scholar 

  47. Otwinowski, Z. & Minor, W. Processing of diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  48. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Cryst. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  49. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  50. Laskowski, R.J., Macarthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check stereochemical quality of protein structures. J. Appl. Cryst. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  51. Carson, M. Ribbons. Methods Enzymol. 277, 493–505 (1997).

    Article  CAS  Google Scholar 

  52. Svergun, D.I. Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys. J. 76, 2879–2886 (1999).

    Article  CAS  Google Scholar 

  53. Volkov, V.V. & Svergun, D.I. Uniqueness of ab initio shape determination in small-angle scattering. J. Appl. Cryst. 36, 860–864 (2003).

    Article  CAS  Google Scholar 

  54. Wriggers, W., Milligan, R.A. & McCammon, J.A. Situs: a package for docking crystal structures into low-resolution maps from electron microscopy. J. Struct. Biol. 125, 185–195 (1999).

    Article  CAS  Google Scholar 

  55. Pettersen, E. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  Google Scholar 

  56. Svergun, D.I., Bargerato, C. & Koch, M.H.J. CRYSOL-a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J. Appl. Cryst. 28, 768–773 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff of ALS beamline 8.2.2 and J. Bolduc for assistance with synchrotron and home laboratory single-crystal diffraction data collection, respectively, L. Guo from BioCAT at the Advanced Photon Source (APS) for assistance with SAXS data collection and T. Hamma, J. Pitt, J. Posakony, A. Roll-Mecak and H. Suga for discussions. Use of the APS was supported by the US Department of Energy, Basic Energy Sciences, Office of Science, under contract No. W-31-109-ENG-38. BioCAT is a US National Institutes of Health–supported Research Center (RR-08630). This work was supported by the Howard Hughes Medical Institute (HHMI) and the W.M. Keck Foundation. A.R.F.-D. is an Investigator of the HHMI.

Author information

Authors and Affiliations

Authors

Contributions

N.K. designed and prepared RNA constructs, analyzed ligand binding, obtained crystals, carried out diffraction data collection and participated in structure determination and in SAXS data collection. N.J.B. participated in SAXS data collection, analyzed the SAXS data and designed, performed and analyzed the nuclease probing experiments. A.R.F.-D. participated in diffraction data collection, structure determination and refinement. All authors contributed to manuscript preparation.

Corresponding author

Correspondence to Adrian R Ferré-D'Amaré.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11, Supplementary Tables 1 and 2 and Supplementary Methods (PDF 1528 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulshina, N., Baird, N. & Ferré-D'Amaré, A. Recognition of the bacterial second messenger cyclic diguanylate by its cognate riboswitch. Nat Struct Mol Biol 16, 1212–1217 (2009). https://doi.org/10.1038/nsmb.1701

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1701

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing