Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The ClC-0 chloride channel is a 'broken' Cl/H+ antiporter

This article has been updated

Abstract

Ion channels have historically been viewed as distinct from secondary active transporters. However, the recent discovery that the CLC 'chloride channel' family is made up of both channels and active transporters has led to the hypothesis that the ion-transport mechanisms of these two types of membrane proteins may be similar. Here we use single-channel analysis to demonstrate that ClC-0 channel gating (opening and closing) involves the transmembrane movement of protons. This result indicates that ClC-0 is a 'broken' Cl/H+ antiporter in which one of the conformational states has become leaky for chloride ions. This finding clarifies the evolutionary relationship between the channels and transporters and conveys that similar mechanisms and analogous protein movements are used by both.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ClC-0 gating.
Figure 2: Slow-gate closures recorded from patches with identical chloride gradients and different proton gradients.
Figure 3: The gating asymmetry ratio J+/J as a function of free energy released from chloride transport, ΔGCl, and proton transport, ΔGH.
Figure 4: A possible model for non-equilibrium gating in ClC-0.

Similar content being viewed by others

Change history

  • 27 July 2008

    Supplementary information is available on the Nature Structural & Molecular Biology website

References

  1. Jentsch, T.J., Poet, M., Fuhrmann, J.C. & Zdebik, A.A. Physiological functions of CLC Cl channels gleaned from human genetic disease and mouse models. Annu. Rev. Physiol. 67, 779–807 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Puljak, L. & Kilic, G. Emerging roles of chloride channels in human diseases. Biochim. Biophys. Acta 1762, 404–413 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Sile, S., Vanoye, C.G. & George, A.L. Jr. Molecular physiology of renal ClC chloride channels/transporters. Curr. Opin. Nephrol. Hypertens. 15, 511–516 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Stein, W.D. Carriers and Pumps. An Introduction to Membrane Transport (Academic, San Diego, CA, 1990).

    Google Scholar 

  5. Chen, M.F. & Chen, T.Y. Different fast-gate regulation by external Cl and H+ of the muscle-type ClC chloride channels. J. Gen. Physiol. 118, 23–32 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hanke, W. & Miller, C. Single chloride channels from Torpedo electroplax. Activation by protons. J. Gen. Physiol. 82, 25–45 (1983).

    Article  CAS  PubMed  Google Scholar 

  7. Miller, C. ClC chloride channels viewed through a transporter lens. Nature 440, 484–489 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Chen, T.Y. Structure and function of CLC channels. Annu. Rev. Physiol. 67, 809–839 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Dutzler, R. The ClC family of chloride channels and transporters. Curr. Opin. Struct. Biol. 16, 439–446 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Matulef, K. & Maduke, M. The CLC 'chloride channel' family: revelations from prokaryotes. Mol. Membr. Biol. 24, 342–350 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Richard, E.A. & Miller, C. Steady-state coupling of ion-channel conformations to a transmembrane ion gradient. Science 247, 1208–1210 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. Hill, T.L. Free Energy Transduction in Biology (Academic, New York, NY, 1977).

    Google Scholar 

  13. Accardi, A. & Miller, C. Secondary active transport mediated by a prokaryotic homologue of ClC Cl channels. Nature 427, 803–807 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Picollo, A. & Pusch, M. Chloride/proton antiporter activity of mammalian CLC proteins ClC-4 and ClC-5. Nature 436, 420–423 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Scheel, O., Zdebik, A.A., Lourdel, S. & Jentsch, T.J. Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins. Nature 436, 424–427 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Traverso, S., Zifarelli, G., Aiello, R. & Pusch, M. Proton sensing of ClC-0 mutant E166D. J. Gen. Physiol. 127, 51–65 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dutzler, R., Campbell, E.B. & MacKinnon, R. Gating the selectivity filter in ClC chloride channels. Science 300, 108–112 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Chen, M.F. & Chen, T.Y. Side-chain charge effects and conductance determinants in the pore of ClC-0 chloride channels. J. Gen. Physiol. 122, 133–145 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Engh, A.M. & Maduke, M. Cysteine accessibility in ClC-0 supports conservation of the ClC intracellular vestibule. J. Gen. Physiol. 125, 601–617 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Estevez, R. et al. Conservation of chloride channel structure revealed by an inhibitor binding site in ClC-1. Neuron 38, 47–59 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Accardi, A. et al. Separate ion pathways in a Cl/H+ exchanger. J. Gen. Physiol. 126, 563–570 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Saviane, C., Conti, F. & Pusch, M. The muscle chloride channel ClC-1 has a double-barreled appearance that is differentially affected in dominant and recessive myotonia. J. Gen. Physiol. 113, 457–468 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Accardi, A. & Pusch, M. Fast and slow gating relaxations in the muscle chloride channel CLC-1. J. Gen. Physiol. 116, 433–444 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Aickin, C.C. Intracellular pH regulation by vertebrate muscle. Annu. Rev. Physiol. 48, 349–361 (1986).

    Article  CAS  PubMed  Google Scholar 

  25. Nguitragool, W. & Miller, C. Inaugural article: CLC Cl/H+ transporters constrained by covalent cross-linking. Proc. Natl. Acad. Sci. USA 104, 20659–20665 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zdebik, A.A. et al. Determinants of anion-proton coupling in mammalian endosomal CLC proteins. J. Biol. Chem. 283, 4219–4227 (2007).

    Article  PubMed  Google Scholar 

  27. DeFelice, L.J. & Goswami, T. Transporters as channels. Annu. Rev. Physiol. 69, 87–112 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Miller, C. A leak in the EAATs. Nat. Struct. Mol. Biol. 14, 356–357 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Pusch, M. Structural insights into chloride and proton-mediated gating of CLC chloride channels. Biochemistry 43, 1135–1144 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Aromataris, E.C. & Rychkov, G.Y. ClC-1 chloride channel: matching its properties to a role in skeletal muscle. Clin. Exp. Pharmacol. Physiol. 33, 1118–1123 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Jentsch, T.J., Steinmeyer, K. & Schwarz, G. Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes. Nature 348, 510–514 (1990).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Matulef for help with the data analysis and R. Blaustein, B. Kobertz, R. Lewis, R. Reimer, J. Huguenard and members of the Maduke laboratory for comments on the manuscript. This work was supported by the US National Institutes of Health grant R01 GM070773 and by the Mathers Foundation. J.L. is supported by the Human Frontiers Science Program.

Author information

Authors and Affiliations

Authors

Contributions

J.L. collected the experimental data; J.L. and M.M. designed the experiments, analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Merritt Maduke.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 (PDF 65 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lísal, J., Maduke, M. The ClC-0 chloride channel is a 'broken' Cl/H+ antiporter. Nat Struct Mol Biol 15, 805–810 (2008). https://doi.org/10.1038/nsmb.1466

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1466

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing