Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Protein disaggregation by the AAA+ chaperone ClpB involves partial threading of looped polypeptide segments

Abstract

The ring-forming AAA+ chaperone ClpB cooperates with the DnaK chaperone system to reactivate aggregated proteins. With the assistance of DnaK, ClpB extracts unfolded polypeptides from aggregates via substrate threading through its central channel. Here we analyze the processing of mixed aggregates consisting of protein fusions of misfolded and native domains. ClpB–DnaK reactivated all aggregated fusion proteins with similar efficiency, without unfolding native domains, demonstrating that partial threading of the misfolded moiety is sufficient to solubilize aggregates. Reactivation by ClpB–DnaK occurred even when two stably folded domains flanked the aggregated moiety, indicating threading of internal substrate segments. In contrast with the related AAA+ chaperone ClpC, ClpB lacks a robust unfolding activity, enabling it to sense the conformational state of substrates. ClpB rings are highly unstable, which may facilitate dissociation from trapped substrates during threading.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mixed protein aggregates, harboring misfolded and native domains, are efficiently processed by KJE–ClpB.
Figure 2: Partial threading of the misfolded luciferase moiety is sufficient for solubilization of mixed protein aggregates.
Figure 3: Exchange of the labile moiety reveals the same principles of KJE–ClpB-mediated disaggregation of mixed protein aggregates.
Figure 4: The folding state of aggregated luciferase-DHFR influences both ClpB threading mode and luciferase reactivation.
Figure 5: Partial substrate threading mode is operative during ClpB-mediated protein disaggregation of an authentic thermolabile E. coli protein.
Figure 6: ClpB hexamers are dynamic assemblies.
Figure 7: Solubilization of mixed protein aggregates by peptidase-cooperating ClpC–MecA.

Similar content being viewed by others

References

  1. Wickner, S., Maurizi, M.R. & Gottesman, S. Posttranslational quality control: folding, refolding, and degrading proteins. Science 286, 1888–1893 (1999).

    Article  CAS  Google Scholar 

  2. Hanson, P.I. & Whiteheart, S.W. AAA+ proteins: have engine, will work. Nat. Rev. Mol. Cell Biol. 6, 519–529 (2005).

    Article  CAS  Google Scholar 

  3. Baker, T.A. & Sauer, R.T. ATP-dependent proteases of bacteria: recognition logic and operating principles. Trends Biochem. Sci. 31, 647–653 (2006).

    Article  CAS  Google Scholar 

  4. Maurizi, M.R. & Xia, D. Protein binding and disruption by Clp/Hsp100 chaperones. Structure 12, 175–183 (2004).

    Article  CAS  Google Scholar 

  5. Squires, C.L., Pedersen, S., Ross, B.M. & Squires, C. ClpB is the Escherichia coli heat shock protein F84.1. J. Bacteriol. 173, 4254–4262 (1991).

    Article  CAS  Google Scholar 

  6. Goloubinoff, P., Mogk, A., Peres Ben Zvi, A., Tomoyasu, T. & Bukau, B. Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc. Natl. Acad. Sci. USA 96, 13732–13737 (1999).

    Article  CAS  Google Scholar 

  7. Zolkiewski, M. ClpB cooperates with DnaK, DnaJ, and GrpE in suppressing protein aggregation. A novel multi-chaperone system from Escherichia coli. J. Biol. Chem. 274, 28083–28086 (1999).

    Article  CAS  Google Scholar 

  8. Motohashi, K., Watanabe, Y., Yohda, M. & Yoshida, M. Heat-inactivated proteins are rescued by the DnaK.J-GrpE set and ClpB chaperones. Proc. Natl. Acad. Sci. USA 96, 7184–7189 (1999).

    Article  CAS  Google Scholar 

  9. Sanchez, Y. & Lindquist, S.L. HSP104 required for induced thermotolerance. Science 248, 1112–1115 (1990).

    Article  CAS  Google Scholar 

  10. Queitsch, C., Hong, S.W., Vierling, E. & Lindquist, S. Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell 12, 479–492 (2000).

    Article  CAS  Google Scholar 

  11. Hong, S.W. & Vierling, E. Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc. Natl. Acad. Sci. USA 97, 4392–4397 (2000).

    Article  CAS  Google Scholar 

  12. Siddiqui, S.M., Sauer, R.T. & Baker, T.A. Role of the processing pore of the ClpX AAA+ ATPase in the recognition and engagement of specific protein substrates. Genes Dev. 18, 369–374 (2004).

    Article  CAS  Google Scholar 

  13. Weibezahn, J. et al. Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB. Cell 119, 653–665 (2004).

    Article  CAS  Google Scholar 

  14. Lum, R., Tkach, J.M., Vierling, E. & Glover, J.R. Evidence for an unfolding/threading mechanism for protein disaggregation by Saccharomyces cerevisiae Hsp104. J. Biol. Chem. 279, 29139–29146 (2004).

    Article  CAS  Google Scholar 

  15. Yamada-Inagawa, T., Okuno, T., Karata, K., Yamanaka, K. & Ogura, T. Conserved pore residues in the AAA protease FtsH are important for proteolysis and its coupling to ATP hydrolysis. J. Biol. Chem. 278, 50182–50187 (2003).

    Article  CAS  Google Scholar 

  16. Hinnerwisch, J., Fenton, W.A., Furtak, K.J., Farr, G.W. & Horwich, A.L. Loops in the central channel of ClpA chaperone mediate protein binding, unfolding, and translocation. Cell 121, 1029–1041 (2005).

    Article  CAS  Google Scholar 

  17. Dougan, D.A., Reid, B.G., Horwich, A.L. & Bukau, B. ClpS, a substrate modulator of the ClpAP machine. Mol. Cell 9, 673–683 (2002).

    Article  CAS  Google Scholar 

  18. Andersson, F.I. et al. Cyanobacterial ClpC/HSP100 protein displays intrinsic chaperone activity. J. Biol. Chem. 281, 5468–5475 (2006).

    Article  CAS  Google Scholar 

  19. Eriksson, M.J. & Clarke, A.K. The heat shock protein ClpB mediates the development of thermotolerance in the cyanobacterium Synechococcus sp. strain PCC 7942. J. Bacteriol. 178, 4839–4846 (1996).

    Article  CAS  Google Scholar 

  20. Mogk, A. et al. Identification of thermolabile E. coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J. 18, 6934–6949 (1999).

    Article  CAS  Google Scholar 

  21. Tomoyasu, T., Mogk, A., Langen, H., Goloubinoff, P. & Bukau, B. Genetic dissection of the roles of chaperones and proteases in protein folding and degradation in the Escherichia coli cytosol. Mol. Microbiol. 40, 397–413 (2001).

    Article  CAS  Google Scholar 

  22. Martin, A. & Schmid, F.X. Evolutionary stabilization of the gene-3-protein of phage fd reveals the principles that govern the thermodynamic stability of two-domain proteins. J. Mol. Biol. 328, 863–875 (2003).

    Article  CAS  Google Scholar 

  23. Tsalkova, T.N. & Privalov, P.L. Thermodynamic study of domain organization in troponin C and calmodulin. J. Mol. Biol. 181, 533–544 (1985).

    Article  CAS  Google Scholar 

  24. Wenk, M. & Jaenicke, R. Calorimetric analysis of the Ca2+-binding βγ-crystallin homolog protein S from Myxococcus xanthus: intrinsic stability and mutual stabilization of domains. J. Mol. Biol. 293, 117–124 (1999).

    Article  CAS  Google Scholar 

  25. Gast, K. et al. Cold denaturation of yeast phosphoglycerate kinase: which domain is more stable? FEBS Lett. 358, 247–250 (1995).

    Article  CAS  Google Scholar 

  26. Matouschek, A. Protein unfolding—an important process in vivo? Curr. Opin. Struct. Biol. 13, 98–109 (2003).

    Article  CAS  Google Scholar 

  27. Weber-Ban, E.U., Reid, B.G., Miranker, A.D. & Horwich, A.L. Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature 401, 90–93 (1999).

    Article  CAS  Google Scholar 

  28. Lee, S. et al. The structure of ClpB. A molecular chaperone that rescues proteins from an aggregated state. Cell 115, 229–240 (2003).

    Article  CAS  Google Scholar 

  29. Lee, S., Choi, J.M. & Tsai, F.T. Visualizing the ATPase cycle in a protein disaggregating machine: structural basis for substrate binding by ClpB. Mol. Cell 25, 261–271 (2007).

    Article  CAS  Google Scholar 

  30. Johnston, J.A., Johnson, E.S., Waller, P.R. & Varshavsky, A. Methotrexate inhibits proteolysis of dihydrofolate reductase by the N-end rule pathway. J. Biol. Chem. 270, 8172–8178 (1995).

    Article  CAS  Google Scholar 

  31. Lee, C., Schwartz, M.P., Prakash, S., Iwakura, M. & Matouschek, A. ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal. Mol. Cell 7, 627–637 (2001).

    Article  CAS  Google Scholar 

  32. Ainavarapu, S.R., Li, L., Badilla, C.L. & Fernandez, J.M. Ligand binding modulates the mechanical stability of dihydrofolate reductase. Biophys. J. 89, 3337–3344 (2005).

    Article  CAS  Google Scholar 

  33. Weibezahn, J., Schlieker, C., Bukau, B. & Mogk, A. Characterization of a trap mutant of the AAA+ chaperone ClpB. J. Biol. Chem. 278, 32608–32617 (2003).

    Article  CAS  Google Scholar 

  34. Turgay, K., Hamoen, L.W., Venema, G. & Dubnau, D. Biochemical characterization of a molecular switch involving the heat shock protein ClpC, which controls the activity of ComK, the competence transcription factor of Bacillus subtilis. Genes Dev. 11, 119–128 (1997).

    Article  CAS  Google Scholar 

  35. Turgay, K., Hahn, J., Burghoorn, J. & Dubnau, D. Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor. EMBO J. 17, 6730–6738 (1998).

    Article  CAS  Google Scholar 

  36. Schlothauer, T., Mogk, A., Dougan, D.A., Bukau, B. & Turgay, K. MecA, an adaptor protein necessary for ClpC chaperone activity. Proc. Natl. Acad. Sci. USA 100, 2306–2311 (2003).

    Article  CAS  Google Scholar 

  37. Wendler, P. et al. Atypical AAA+ subunit packing creates an expanded cavity for disaggregation by the protein-remodeling factor Hsp104. Cell 131, 1366–1377 (2007).

    Article  CAS  Google Scholar 

  38. Hoskins, J.R., Yanagihara, K., Mizuuchi, K. & Wickner, S. ClpAP and ClpXP degrade proteins with tags located in the interior of the primary sequence. Proc. Natl. Acad. Sci. USA 99, 11037–11042 (2002).

    Article  CAS  Google Scholar 

  39. Lee, C., Prakash, S. & Matouschek, A. Concurrent translocation of multiple polypeptide chains through the proteasomal degradation channel. J. Biol. Chem. 277, 34760–34765 (2002).

    Article  CAS  Google Scholar 

  40. Burton, R.E., Siddiqui, S.M., Kim, Y.I., Baker, T.A. & Sauer, R.T. Effects of protein stability and structure on substrate processing by the ClpXP unfolding and degradation machine. EMBO J. 20, 3092–3100 (2001).

    Article  CAS  Google Scholar 

  41. Piwko, W. & Jentsch, S. Proteasome-mediated protein processing by bidirectional degradation initiated from an internal site. Nat. Struct. Mol. Biol. 13, 691–697 (2006).

    Article  CAS  Google Scholar 

  42. Hoppe, T. et al. Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell 102, 577–586 (2000).

    Article  CAS  Google Scholar 

  43. Tian, L., Holmgren, R.A. & Matouschek, A. A conserved processing mechanism regulates the activity of transcription factors Cubitus interruptus and NF-κB. Nat. Struct. Mol. Biol. 12, 1045–1053 (2005).

    Article  CAS  Google Scholar 

  44. Orian, A. et al. Structural motifs involved in ubiquitin-mediated processing of the NF-κB precursor p105: roles of the glycine-rich region and a downstream ubiquitination domain. Mol. Cell. Biol. 19, 3664–3673 (1999).

    Article  CAS  Google Scholar 

  45. Singh, S.K., Guo, F. & Maurizi, M.R. ClpA and ClpP remain associated during multiple rounds of ATP-dependent protein degradation by ClpAP protease. Biochemistry 38, 14906–14915 (1999).

    Article  CAS  Google Scholar 

  46. Kress, W., Mutschler, H. & Weber-Ban, E. Assembly pathway of an AAA+ protein: tracking ClpA and ClpAP complex formation in real time. Biochemistry 46, 6183–6193 (2007).

    Article  CAS  Google Scholar 

  47. Zietkiewicz, S., Krzewska, J. & Liberek, K. Successive and synergistic action of the Hsp70 and Hsp100 chaperones in protein disaggregation. J. Biol. Chem. 279, 44376–44383 (2004).

    Article  CAS  Google Scholar 

  48. Zietkiewicz, S., Lewandowska, A., Stocki, P. & Liberek, K. Hsp70 chaperone machine remodels protein aggregates at the initial step of Hsp70-Hsp100-dependent disaggregation. J. Biol. Chem. 281, 7022–7029 (2006).

    Article  CAS  Google Scholar 

  49. Carrio, M.M. & Villaverde, A. Localization of chaperones DnaK and GroEL in bacterial inclusion bodies. J. Bacteriol. 187, 3599–3601 (2005).

    Article  CAS  Google Scholar 

  50. Kirstein, J. et al. Adaptor protein controlled oligomerization activates the AAA+ protein ClpC. EMBO J. 25, 1481–1491 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Tessarz for critical reading of the manuscript and E. Vierling (Department of Biochemistry and molecular biophysics, University of Arizona, USA) for providing 16.6 sHsp antibodies. This work was supported by grants from the Deutsche Forschungsgemeinschaft (Bu617/17-1) to B.B. and A.M., the Fond der Chemischen Industrie to B.B. and a Heisenberg Fellowship of the DFG to A.M.

Author information

Authors and Affiliations

Authors

Contributions

T.H., A.Z., A.M. and B.B conceived and designed experiments. T.H., A.Z. and I.B. performed experiments; T.H., A.Z., I.B., J.K., K.T., A.M. and B.B. analyzed the data; J.K. and K.T. assisted in experimental design; A.M. and B.B. wrote the manuscript.

Corresponding authors

Correspondence to Axel Mogk or Bernd Bukau.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Table 1 (PDF 3292 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haslberger, T., Zdanowicz, A., Brand, I. et al. Protein disaggregation by the AAA+ chaperone ClpB involves partial threading of looped polypeptide segments. Nat Struct Mol Biol 15, 641–650 (2008). https://doi.org/10.1038/nsmb.1425

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1425

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing