Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Signal sequence–independent membrane targeting of ribosomes containing short nascent peptides within the exit tunnel

Abstract

Ribosomes synthesizing inner membrane proteins in Escherichia coli are targeted to the translocon in the plasma membrane by the signal recognition particle (SRP) and the SRP receptor, FtsY. Here we show using a purified system that membrane targeting does not require an exposed signal-anchor sequence, as SRP-dependent targeting takes place with ribosomes containing short nascent peptides, with or without a signal-anchor sequence, within the peptide exit tunnel. Signaling from inside the tunnel involves ribosomal protein L23, which constitutes part of the SRP binding site. When nascent peptides emerge from the ribosome, the targeting complex is maintained with ribosomes exposing a signal-anchor sequence, whereas ribosomes exposing other sequences are released. These results indicate that ribosome–nascent chain complexes containing any nascent peptide within the exit tunnel can enter the SRP targeting pathway to be sorted at the membrane into ribosome-nascent chain complexes that synthesize either membrane or cytosolic proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of RNCs.
Figure 2: Affinity of SRP for RNCs with varying nascent peptides.
Figure 3: Affinity of FtsY for SRP complexes with Lep-RNCs.
Figure 4: SRP-dependent binding of RNCs to inverted inner membrane vesicles.
Figure 5: Ribosomal protein L23 and SRP recruitment.

Similar content being viewed by others

References

  1. Koch, H.G. et al. In vitro studies with purified components reveal signal recognition particle (SRP) and SecA/SecB as constituents of two independent protein-targeting pathways of Escherichia coli. Mol. Biol. Cell 10, 2163–2173 (1999).

    Article  CAS  Google Scholar 

  2. Ulbrandt, N.D., Newitt, J.A. & Bernstein, H.D. The E. coli signal recognition particle is required for the insertion of a subset of inner membrane proteins. Cell 88, 187–196 (1997).

    Article  CAS  Google Scholar 

  3. MacFarlane, J. & Müller, M. The functional integration of a polytopic membrane protein of Escherichia coli is dependent on the bacterial signal-recognition particle. Eur. J. Biochem. 233, 766–771 (1995).

    Article  CAS  Google Scholar 

  4. Luirink, J., von Heijne, G., Houben, E. & de Gier, J.W. Biogenesis of inner membrane proteins in Escherichia coli. Annu. Rev. Microbiol. 59, 329–355 (2005).

    Article  CAS  Google Scholar 

  5. Flanagan, J.J. et al. Signal recognition particle binds to ribosome-bound signal sequences with fluorescence-detected subnanomolar affinity that does not diminish as the nascent chain lengthens. J. Biol. Chem. 278, 18628–18637 (2003).

    Article  CAS  Google Scholar 

  6. Van den Berg, B. et al. X-ray structure of a protein-conducting channel. Nature 427, 36–44 (2004).

    Article  CAS  Google Scholar 

  7. Walter, P. & Blobel, G. Translocation of proteins across the endoplasmic reticulum III. Signal recognition protein (SRP) causes signal sequence-dependent and site-specific arrest of chain elongation that is released by microsomal membranes. J. Cell Biol. 91, 557–561 (1981).

    Article  CAS  Google Scholar 

  8. Wolin, S.L. & Walter, P. Signal recognition particle mediates a transient elongation arrest of preprolactin in reticulocyte lysate. J. Cell Biol. 109, 2617–2622 (1989).

    Article  CAS  Google Scholar 

  9. Mason, N., Ciufo, L.F. & Brown, J.D. Elongation arrest is a physiologically important function of signal recognition particle. EMBO J. 19, 4164–4174 (2000).

    Article  CAS  Google Scholar 

  10. Raine, A. et al. Targeting and insertion of heterologous membrane proteins in E. coli. Biochimie 85, 659–668 (2003).

    Article  CAS  Google Scholar 

  11. de Gier, J.W. et al. Assembly of a cytoplasmic membrane protein in Escherichia coli is dependent on the signal recognition particle. FEBS Lett. 399, 307–309 (1996).

    Article  CAS  Google Scholar 

  12. Nakahigashi, K. et al. HemK, a class of protein methyl transferase with similarity to DNA methyl transferases, methylates polypeptide chain release factors, and hemK knockout induces defects in translational termination. Proc. Natl. Acad. Sci. USA 99, 1473–1478 (2002).

    Article  CAS  Google Scholar 

  13. Buskiewicz, I., Kubarenko, A., Peske, F., Rodnina, M.V. & Wintermeyer, W. Domain rearrangement of SRP protein Ffh upon binding 4.5S RNA and the SRP receptor FtsY. RNA 11, 947–957 (2005).

    Article  CAS  Google Scholar 

  14. Buskiewicz, I. et al. Conformations of the signal recognition particle protein Ffh from Escherichia coli as determined by FRET. J. Mol. Biol. 351, 417–430 (2005).

    Article  CAS  Google Scholar 

  15. Batey, R.T., Rambo, R.P., Lucast, L., Rha, B. & Doudna, J.A. Crystal structure of the ribonucleoprotein core of the signal recognition particle. Science 287, 1232–1239 (2000).

    Article  CAS  Google Scholar 

  16. Ban, N., Nissen, P., Hansen, J., Moore, P.B. & Steitz, T.A. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289, 905–920 (2000).

    Article  CAS  Google Scholar 

  17. Houben, E.N., Zarivach, R., Oudega, B. & Luirink, J. Early encounters of a nascent membrane protein: specificity and timing of contacts inside and outside the ribosome. J. Cell Biol. 170, 27–35 (2005).

    Article  CAS  Google Scholar 

  18. Woolhead, C.A., McCormick, P.J. & Johnson, A.E. Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins. Cell 116, 725–736 (2004).

    Article  CAS  Google Scholar 

  19. Lu, J. & Deutsch, C. Folding zones inside the ribosomal exit tunnel. Nat. Struct. Mol. Biol. 12, 1123–1129 (2005).

    Article  CAS  Google Scholar 

  20. Ryan, P. & Edwards, C.O. Systematic introduction of proline in a eukaryotic signal sequence suggests asymmetry within the hydrophobic core. J. Biol. Chem. 270, 27876–27879 (1995).

    Article  CAS  Google Scholar 

  21. Hessa, T. et al. Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433, 377–381 (2005).

    Article  CAS  Google Scholar 

  22. Beha, D., Deitermann, S., Müller, M. & Koch, H.G. Export of β-lactamase is independent of the signal recognition particle. J. Biol. Chem. 278, 22161–22167 (2003).

    Article  CAS  Google Scholar 

  23. Eitan, A. & Bibi, E. The core Escherichia coli signal recognition particle receptor contains only the N and G domains of FtsY. J. Bacteriol. 186, 2492–2494 (2004).

    Article  CAS  Google Scholar 

  24. Jagath, J.R. et al. Important role of the tetraloop region of 4.5S RNA in SRP binding to its receptor FtsY. RNA 7, 293–301 (2001).

    Article  CAS  Google Scholar 

  25. Peluso, P. et al. Role of 4.5S RNA in assembly of the bacterial signal recognition particle with its receptor. Science 288, 1640–1643 (2000).

    Article  CAS  Google Scholar 

  26. Halic, M. et al. Structure of the signal recognition particle interacting with the elongation-arrested ribosome. Nature 427, 808–814 (2004).

    Article  CAS  Google Scholar 

  27. Gu, S.Q., Peske, F., Wieden, H.J., Rodnina, M.V. & Wintermeyer, W. The signal recognition particle binds to protein L23 at the peptide exit of the Escherichia coli ribosome. RNA 9, 566–573 (2003).

    Article  CAS  Google Scholar 

  28. Kramer, G. et al. L23 protein functions as a chaperone docking site on the ribosome. Nature 419, 171–174 (2002).

    Article  CAS  Google Scholar 

  29. Raue, U., Oellerer, S. & Rospert, S. Association of protein biogenesis factors at the yeast ribosomal tunnel exit is affected by the translational status and nascent polypeptide sequence. J. Biol. Chem. 282, 7809–7816 (2007).

    Article  CAS  Google Scholar 

  30. Callender, R.H., Dyer, R.B., Gilmanshin, R. & Woodruff, W.H. Fast events in protein folding: the time evolution of primary processes. Annu. Rev. Phys. Chem. 49, 173–202 (1998).

    Article  CAS  Google Scholar 

  31. Miller, J.D., Bernstein, H.D. & Walter, P. Interaction of E. coli Ffh/4.5S ribonucleoprotein and FtsY mimics that of mammalian signal recognition particle and its receptor. Nature 367, 657–659 (1994).

    Article  CAS  Google Scholar 

  32. Zheng, N. & Gierasch, L.M. Domain interactions in E. coli SRP: stabilization of M domain by RNA is required for effective signal sequence modulation of NG domain. Mol. Cell 1, 79–87 (1997).

    Article  CAS  Google Scholar 

  33. Nakatogawa, H. & Ito, K. The ribosomal exit tunnel functions as a discriminating gate. Cell 108, 629–636 (2002).

    Article  CAS  Google Scholar 

  34. Mitra, K. et al. Elongation arrest by SecM via a cascade of ribosomal RNA rearrangements. Mol. Cell 22, 533–543 (2006).

    Article  CAS  Google Scholar 

  35. Cruz-Vera, L.R., Gong, M. & Yanofsky, C. Changes produced by bound tryptophan in the ribosome peptidyl transferase center in response to TnaC, a nascent leader peptide. Proc. Natl. Acad. Sci. USA 103, 3598–3603 (2006).

    Article  CAS  Google Scholar 

  36. Liao, S., Lin, J., Do, H. & Johnson, A.E. Both lumenal and cytosolic gating of the aqueous ER translocon pore are regulated from inside the ribosome during membrane protein integration. Cell 90, 31–41 (1997).

    Article  CAS  Google Scholar 

  37. Ullers, R.S. et al. Interplay of signal recognition particle and trigger factor at L23 near the nascent chain exit site on the Escherichia coli ribosome. J. Cell Biol. 161, 679–684 (2003).

    Article  CAS  Google Scholar 

  38. Hsu, L.M., Zagorski, J. & Fournier, M.J. Cloning and sequence analysis of the Escherichia coli 4.5 S RNA gene. J. Mol. Biol. 178, 509–531 (1984).

    Article  CAS  Google Scholar 

  39. Jensen, C.G. & Pedersen, S. Concentrations of 4.5S RNA and Ffh protein in Escherichia coli: the stability of Ffh protein is dependent on the concentration of 4.5S RNA. J. Bacteriol. 176, 7148–7154 (1994).

    Article  CAS  Google Scholar 

  40. Golding, I. & Cox, E.C. Physical nature of bacterial cytoplasm. Phys. Rev. Lett. 96, 098102 (2006).

    Article  Google Scholar 

  41. Jagath, J.R., Rodnina, M.V. & Wintermeyer, W. Conformational changes in the bacterial SRP receptor FtsY upon binding of guanine nucleotides and SRP. J. Mol. Biol. 295, 745–753 (2000).

    Article  CAS  Google Scholar 

  42. De Vrije, T., Tommassen, J. & De Kruijff, B. Optimal posttranslational translocation of the precursor of PhoE protein across Escherichia coli membrane vesicles requires both ATP and the protonmotive force. Biochim. Biophys. Acta 900, 63–72 (1987).

    Article  CAS  Google Scholar 

  43. Müller, M. & Blobel, G. In vitro translocation of bacterial proteins across the plasma membrane of Escherichia coli. Proc. Natl. Acad. Sci. USA 81, 7421–7425 (1984).

    Article  Google Scholar 

  44. Rodnina, M.V. & Wintermeyer, W. GTP consumption of elongation factor Tu during translation of heteropolymeric mRNAs. Proc. Natl. Acad. Sci. USA 92, 1945–1949 (1995).

    Article  CAS  Google Scholar 

  45. Gu, S.Q. et al. Conformation of 4.5S RNA in the signal recognition particle and on the 30S ribosomal subunit. RNA 11, 1374–1384 (2005).

    Article  CAS  Google Scholar 

  46. Laskey, R.A. & Mills, A.D. Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur. J. Biochem. 56, 335–341 (1975).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Bibi, Weizmann Institute of Science, Rehovot, Israel, and J. Luirink, Free University of Amsterdam, for kindly providing plasmid constructs, E. Deuerling, University of Konstanz, Germany, for providing the E. coli strain lacking protein L23, and A. Tonevitsky, Moscow State University, for the antibody against Ffh. We are grateful to M. Wahl, Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany, for help with preparing Figure 5b, and to A. Böhm, S. Möbitz, C. Schillings and P. Striebeck for valuable technical assistance. The work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Contributions

T.B. and J.J. performed the experiments, M.V.R. and W.W. supervised the work and wrote the manuscript.

Corresponding author

Correspondence to Wolfgang Wintermeyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bornemann, T., Jöckel, J., Rodnina, M. et al. Signal sequence–independent membrane targeting of ribosomes containing short nascent peptides within the exit tunnel. Nat Struct Mol Biol 15, 494–499 (2008). https://doi.org/10.1038/nsmb.1402

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1402

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing