Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of a Shigella effector reveals a new class of ubiquitin ligases

Abstract

Bacterial pathogens have evolved effector proteins with ubiquitin E3 ligase activities through structural mimicking. Here we report the crystal structure of the Shigella flexneri type III effector IpaH3, a member of the leucine-rich repeat (LRR)-containing bacterial E3 family. The LRR domain is structurally similar to Yersinia pestis YopM and potentially binds to substrates. The structure of the C-terminal E3 domain differs from the typical RING- and HECT-type E3s. IpaH3 synthesizes a Lys48-linked ubiquitin chain, and the reaction requires noncovalent binding between ubiquitin and a specific E2, UbcH5. Free ubiquitin serves as an acceptor for IpaH3-catalyzed ubiquitin transfer. Cys363 within a conserved CXD motif acts as a nucleophile to catalyze ubiquitin transfer through a transthiolation reaction. The D365N mutant is devoid of E3 activities but turns into a potent ubiquitin-E2 thioesterase. Our analysis establishes a structurally and mechanistically distinct class of ubiquitin ligases found exclusively in pathogenic or symbiotic bacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Properties and mechanism of the ubiquitin (Ub)-ligase activity of the IpaH family.
Figure 2: Overview of the crystal structure of IpaH3 and the N-terminal LRR domain.
Figure 3: Structure of the C-terminal ubiquitin-ligase domain of IpaH3 and comparison with those of known E3 ligases.
Figure 4: The conserved CXD motif important for the ubiquitin-ligase activity of IpaH3.
Figure 5: Ubiquitin-ligase activities of other IpaH family members.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Kerscher, O., Felberbaum, R. & Hochstrasser, M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell Dev. Biol. 22, 159–180 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Kee, Y. & Huibregtse, J.M. Regulation of catalytic activities of HECT ubiquitin ligases. Biochem. Biophys. Res. Commun. 354, 329–333 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rytkonen, A. & Holden, D.W. Bacterial interference of ubiquitination and deubiquitination. Cell Host Microbe 1, 13–22 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Munro, P., Flatau, G. & Lemichez, E. Bacteria and the ubiquitin pathway. Curr. Opin. Microbiol. 10, 39–46 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Angot, A., Vergunst, A., Genin, S. & Peeters, N. Exploitation of eukaryotic ubiquitin signaling pathways by effectors translocated by bacterial type III and type IV secretion systems. PLoS Pathog. 3, e3 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Janjusevic, R., Abramovitch, R.B., Martin, G.B. & Stebbins, C.E. A bacterial inhibitor of host programmed cell death defenses is an E3 ubiquitin ligase. Science 311, 222–226 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Rosebrock, T.R. et al. A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity. Nature 448, 370–374 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang, Y., Higashide, W.M., McCormick, B.A., Chen, J. & Zhou, D. The inflammation-associated Salmonella SopA is a HECT-like E3 ubiquitin ligase. Mol. Microbiol. 62, 786–793 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Kubori, T., Hyakutake, A. & Nagai, H. Legionella translocates an E3 ubiquitin ligase that has multiple U-boxes with distinct functions. Mol. Microbiol. 67, 1307–1319 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Diao, J., Zhang, Y., Huibregtse, J.M., Zhou, D. & Chen, J. Crystal structure of SopA, a Salmonella effector protein mimicking a eukaryotic ubiquitin ligase. Nat. Struct. Mol. Biol. 15, 65–70 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Rohde, J.R., Breitkreutz, A., Chenal, A., Sansonetti, P.J. & Parsot, C. Type III secretion effectors of the IpaH family are E3 ubiquitin ligases. Cell Host Microbe 1, 77–83 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Haraga, A. & Miller, S.I. A Salmonella type III secretion effector interacts with the mammalian serine/threonine protein kinase PKN1. Cell. Microbiol. 8, 837–846 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Ashida, H., Toyotome, T., Nagai, T. & Sasakawa, C. Shigella chromosomal IpaH proteins are secreted via the type III secretion system and act as effectors. Mol. Microbiol. 63, 680–693 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Brzovic, P.S., Lissounov, A., Christensen, D.E., Hoyt, D.W. & Klevit, R.E.A. UbcH5/ubiquitin noncovalent complex is required for processive BRCA1-directed ubiquitination. Mol. Cell 21, 873–880 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Hochstrasser, M. Lingering mysteries of ubiquitin-chain assembly. Cell 124, 27–34 (2006).

    Article  PubMed  Google Scholar 

  16. Kobe, B. & Kajava, A.V. The leucine-rich repeat as a protein recognition motif. Curr. Opin. Struct. Biol. 11, 725–732 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Evdokimov, A.G., Anderson, D.E., Routzahn, K.M. & Waugh, D.S. Unusual molecular architecture of the Yersinia pestis cytotoxin YopM: a leucine-rich repeat protein with the shortest repeating unit. J. Mol. Biol. 312, 807–821 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Huang, L. et al. Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2–E3 enzyme cascade. Science 286, 1321–1326 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Ogunjimi, A.A. et al. Regulation of Smurf2 ubiquitin ligase activity by anchoring the E2 to the HECT domain. Mol. Cell 19, 297–308 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Verdecia, M.A. et al. Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase. Mol. Cell 11, 249–259 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Zheng, N., Wang, P., Jeffrey, P.D. & Pavletich, N.P. Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell 102, 533–539 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Tu, D., Li, W., Ye, Y. & Brunger, A.T. Structure and function of the yeast U-box-containing ubiquitin ligase Ufd2p. Proc. Natl. Acad. Sci. USA 104, 15599–15606 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang, M. et al. Chaperoned ubiquitylation–crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex. Mol. Cell 20, 525–538 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. McDonald, C., Vacratsis, P.O., Bliska, J.B. & Dixon, J.E. The Yersinia virulence factor YopM forms a novel protein complex with two cellular kinases. J. Biol. Chem. 278, 18514–18523 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  27. Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D Biol. Crystallogr. 55, 849–861 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Terwilliger, T.C. Maximum-likelihood density modification. Acta Crystallogr. D Biol. Crystallogr. 56, 965–972 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Terwilliger, T.C. Automated main-chain model building by template matching and iterative fragment extension. Acta Crystallogr. D Biol. Crystallogr. 59, 38–44 (2003).

    Article  PubMed  Google Scholar 

  30. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  31. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  32. Li, W., Tu, D., Brunger, A.T. & Ye, Y. A ubiquitin ligase transfers preformed polyubiquitin chains from a conjugating enzyme to a substrate. Nature 446, 333–337 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Y. Yamada and his staff at the KEK Synchrotron Facility (Tsukuba, Japan) and Y. Dong at the Beijing Synchrotron Radiation Facility (BSRF) for assistances with data collection. We thank C. Long and S. Chen for in-house MS analysis and M.W. Silby (Tufts University) for providing the genomic DNA from P. fluorescens PfO-1. We also thank members of the Shao laboratory for helpful discussions and technical assistance. This work was supported by Chinese Ministry of Science and Technology Grant 2005AA210950 and National Basic Research Plan of China grant (2006CB806502) to F.S.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. performed the crystallography work with assistance from L.H. as well as some of the biochemical assays. H.L. performed most of the biochemical experiments. J.W., Y.Z., Z.P. and L.L. contributed to the generation of reagents. Y.Z., H.L. and F.S. designed the study, interpretated the results and prepared the manuscript.

Corresponding author

Correspondence to Feng Shao.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 1485 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Y., Li, H., Hu, L. et al. Structure of a Shigella effector reveals a new class of ubiquitin ligases. Nat Struct Mol Biol 15, 1302–1308 (2008). https://doi.org/10.1038/nsmb.1517

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1517

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing