Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis of Na+/K+-ATPase adaptation to marine environments

Abstract

Throughout evolution, enzymes have adapted to perform in different environments. The Na+/K+ pump, an enzyme crucial for maintaining ionic gradients across cell membranes, is strongly influenced by the ionic environment. In vertebrates, the pump sees much less external Na+ (100–160 mM) than it does in osmoconformers such as squid (450 mM), which live in seawater. If the extracellular architecture of the squid pump were identical to that of vertebrates, then at the resting potential, the pump's function would be severely compromised because the negative voltage would drive Na+ ions back to their binding sites, practically abolishing forward transport. Here we show that four amino acids that ring the external mouth of the ion translocation pathway are more positive in squid, thereby reducing the pump's sensitivity to external Na+ and explaining how it can perform optimally in the marine environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Alignment of extracellular transmembrane helix linkers for different Na+/K+ pumps.
Figure 2: Charge moved during Na+ translocation by a heterologously expressed squid Na+/K+ pump.
Figure 3: Mutations in the outer surface of the squid Na+/K+ pump affect its affinity for Na+ ions.
Figure 4: Mutations in the outer surface of the squid Na+/K+ pump mapped on the crystal structure of the calcium pump.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Gadsby, D.C., Rakowski, R.F. & De Weer, P. Extracellular access to the Na,K pump: pathway similar to ion channel. Science 260, 100–103 (1993).

    Article  CAS  Google Scholar 

  2. Hilgemann, D.W. Channel-like function of the Na,K pump probed at microsecond resolution in giant membrane patches. Science 263, 1429–1432 (1994).

    Article  CAS  Google Scholar 

  3. Holmgren, M. & Rakowski, R.F. Charge translocation by the Na+/K+ pump under Na+/Na+ exchange conditions: intracellular Na+ dependence. Biophys. J. 90, 1607–1616 (2006).

    Article  CAS  Google Scholar 

  4. Holmgren, M. et al. Three distinct and sequential steps in the release of sodium ions by the Na+/K+-ATPase. Nature 403, 898–901 (2000).

    Article  CAS  Google Scholar 

  5. Sagar, A. & Rakowski, R.F. Access channel model for the voltage dependence of the forward-running Na+/K+ pump. J. Gen. Physiol. 103, 869–893 (1994).

    Article  CAS  Google Scholar 

  6. Mitchell, P. Chemiosmotic coupling and energy transduction. Theor. Exp. Biophys. 2, 159–216 (1969).

    CAS  Google Scholar 

  7. Nakao, M. & Gadsby, D.C. [Na] and [K] dependence of the Na/K pump current-voltage relationship in guinea pig ventricular myocytes. J. Gen. Physiol. 94, 539–565 (1989).

    Article  CAS  Google Scholar 

  8. Rakowski, R.F., Gadsby, D.C. & De Weer, P. Stoichiometry and voltage dependence of the sodium pump in voltage-clamped, internally dialyzed squid giant axon. J. Gen. Physiol. 93, 903–941 (1989).

    Article  CAS  Google Scholar 

  9. Aubin, C.N. & Linsdell, P. Positive charges at the intracellular mouth of the pore regulate anion conduction in the CFTR chloride channel. J. Gen. Physiol. 128, 535–545 (2006).

    Article  Google Scholar 

  10. Brelidze, T.I., Niu, X. & Magleby, K.L. A ring of eight conserved negatively charged amino acids doubles the conductance of BK channels and prevents inward rectification. Proc. Natl. Acad. Sci. USA 100, 9017–9022 (2003).

    Article  CAS  Google Scholar 

  11. D'Avanzo, N. et al. Conduction through the inward rectifier potassium channel, Kir2.1, is increased by negatively charged extracellular residues. J. Gen. Physiol. 125, 493–503 (2005).

    Article  CAS  Google Scholar 

  12. Nimigean, C.M., Chappie, J.S. & Miller, C. Electrostatic tuning of ion conductance in potassium channels. Biochemistry 42, 9263–9268 (2003).

    Article  CAS  Google Scholar 

  13. Hodgkin, A.L. & Keynes, R.D. Active transport of cations in giant axons from Sepia and Loligo. J. Physiol. (Lond.) 128, 28–60 (1955).

    Article  CAS  Google Scholar 

  14. De Weer, P. Effects of intracellular ADP and Pi on the sodium pump of squid giant axon. Nature 226, 1251–1252 (1970).

    Article  CAS  Google Scholar 

  15. De Weer, P. & Geduldig, D. Electrogenic sodium pump in squid giant axon. Science 179, 1326–1328 (1973).

    Article  CAS  Google Scholar 

  16. Rosenthal, J.J. & Gilly, W.F. Amino acid sequence of a putative sodium channel expressed in the giant axon of the squid Loligo opalescens. Proc. Natl. Acad. Sci. USA 90, 10026–10030 (1993).

    Article  CAS  Google Scholar 

  17. Rosenthal, J.J., Liu, T.I. & Gilly, W.F. A family of delayed rectifier Kv1 cDNAs showing cell type-specific expression in the squid stellate ganglion/giant fiber lobe complex. J. Neurosci. 17, 5070–5079 (1997).

    Article  CAS  Google Scholar 

  18. Rosenthal, J.J., Vickery, R.G. & Gilly, W.F. Molecular identification of SqKv1A. A candidate for the delayed rectifier K channel in squid giant axon. J. Gen. Physiol. 108, 207–219 (1996).

    Article  CAS  Google Scholar 

  19. Kaplan, J.H. Biochemistry of Na,K-ATPase. Annu. Rev. Biochem. 71, 511–535 (2002).

    Article  CAS  Google Scholar 

  20. Toyoshima, C., Nakasako, M., Nomura, H. & Ogawa, H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405, 647–655 (2000).

    Article  CAS  Google Scholar 

  21. Albers, R.W. Biochemical aspects of active transport. Annu. Rev. Biochem. 36, 727–756 (1967).

    Article  CAS  Google Scholar 

  22. Post, R.L., Kume, T., Tobin, T., Orcutt, B. & Sen, A.K. Flexibility of an active center in sodium-plus-potassium adenosine triphosphatase. J. Gen. Physiol. 54, 306–326 (1969).

    Article  CAS  Google Scholar 

  23. Heyse, S., Wuddel, I., Apell, H.J. & Sturmer, W. Partial reactions of the Na,K-ATPase: determination of rate constants. J. Gen. Physiol. 104, 197–240 (1994).

    Article  CAS  Google Scholar 

  24. Taglialatela, M., Toro, L. & Stefani, E. Novel voltage clamp to record small, fast currents from ion channels expressed in Xenopus oocytes. Biophys. J. 61, 78–82 (1992).

    Article  CAS  Google Scholar 

  25. Gadsby, D.C., Nakao, M. & Bahinski, A. Voltage dependence of transient and steady-state Na/K pump currents in myocytes. Mol. Cell. Biochem. 89, 141–146 (1989).

    Article  CAS  Google Scholar 

  26. Nakao, M. & Gadsby, D.C. Voltage dependence of Na translocation by the Na/K pump. Nature 323, 628–630 (1986).

    Article  CAS  Google Scholar 

  27. De Weer, P., Gadsby, D.C. & Rakowski, R.F. Voltage dependence of the apparent affinity for external Na+ of the backward-running sodium pump. J. Gen. Physiol. 117, 315–328 (2001).

    Article  CAS  Google Scholar 

  28. Rosenthal, J.J. & Bezanilla, F. Seasonal variation in conduction velocity of action potentials in squid giant axons. Biol. Bull. 199, 135–143 (2000).

    Article  CAS  Google Scholar 

  29. Toyoshima, C., Nomura, H. & Tsuda, T. Lumenal gating mechanism revealed in calcium pump crystal structures with phosphate analogues. Nature 432, 361–368 (2004).

    Article  CAS  Google Scholar 

  30. Artigas, P. & Gadsby, D.C. Ouabain affinity determining residues lie close to the Na/K pump ion pathway. Proc. Natl. Acad. Sci. USA 103, 12613–12618 (2006).

    Article  CAS  Google Scholar 

  31. Guennoun, S. & Horisberger, J.D. Structure of the 5th transmembrane segment of the Na,K-ATPase alpha subunit: a cysteine-scanning mutagenesis study. FEBS Lett. 482, 144–148 (2000).

    Article  CAS  Google Scholar 

  32. Guennoun, S. & Horisberger, J.D. Cysteine-scanning mutagenesis study of the sixth transmembrane segment of the Na,K-ATPase alpha subunit. FEBS Lett. 513, 277–281 (2002).

    Article  CAS  Google Scholar 

  33. Horisberger, J.D., Kharoubi-Hess, S., Guennoun, S. & Michielin, O. The fourth transmembrane segment of the Na,K-ATPase alpha subunit: a systematic mutagenesis study. J. Biol. Chem. 279, 29542–29550 (2004).

    Article  CAS  Google Scholar 

  34. Nielsen, J.M., Pedersen, P.A., Karlish, S.J. & Jorgensen, P.L. Importance of intramembrane carboxylic acids for occlusion of K+ ions at equilibrium in renal Na,K-ATPase. Biochemistry 37, 1961–1968 (1998).

    Article  CAS  Google Scholar 

  35. Ogawa, H. & Toyoshima, C. Homology modeling of the cation binding sites of Na+K+-ATPase. Proc. Natl. Acad. Sci. USA 99, 15977–15982 (2002).

    Article  CAS  Google Scholar 

  36. Reyes, N. & Gadsby, D.C. Ion permeation through the Na+,K+-ATPase. Nature 443, 470–474 (2006).

    Article  CAS  Google Scholar 

  37. Arguello, J.M. & Kaplan, J.H. Glutamate 779, an intramembrane carboxyl, is essential for monovalent cation binding by the Na,K-ATPase. J. Biol. Chem. 269, 6892–6899 (1994).

    CAS  PubMed  Google Scholar 

  38. Feng, J. & Lingrel, J.B. Functional consequences of substitutions of the carboxyl residue glutamate 779 of the Na,K-ATPase. Cell. Mol. Biol. Res. 41, 29–37 (1995).

    CAS  PubMed  Google Scholar 

  39. Vilsen, B. Mutant Glu781 → Ala of the rat kidney Na+,K+-ATPase displays low cation affinity and catalyzes ATP hydrolysis at a high rate in the absence of potassium ions. Biochemistry 34, 1455–1463 (1995).

    Article  CAS  Google Scholar 

  40. Liman, E.R., Tytgat, J. & Hess, P. Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Neuron 9, 861–871 (1992).

    Article  CAS  Google Scholar 

  41. Kozak, M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44, 283–292 (1986).

    Article  CAS  Google Scholar 

  42. Kozak, M. An analysis of vertebrate mRNA sequences: intimations of translational control. J. Cell Biol. 115, 887–903 (1991).

    Article  CAS  Google Scholar 

  43. Kozak, M. Structural features in eukaryotic mRNAs that modulate the initiation of translation. J. Biol. Chem. 266, 19867–19870 (1991).

    CAS  PubMed  Google Scholar 

  44. Smith, L.D., Xu, W. & Varnold, R.L. Xenopus laevis: practical uses in cell and molecular biology. in Methods in Cell Biology (eds. Kay, B.K. & Pengs, H.B.) 45–60 (Academic Press, San Diego, 1991).

    Google Scholar 

  45. Rakowski, R.F., Vasilets, L.A., LaTona, J. & Schwarz, W. A negative slope in the current-voltage relationship of the Na+/K+ pump in Xenopus oocytes produced by reduction of external [K+]. J. Membr. Biol. 121, 177–187 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. De Weer, K. Swartz and S. Silberberg for useful discussions, the DNA sequencing facility at the NINDS, and P. De Weer, D. Gadsby, R. Rakowski and F. Bezanilla for participating in the experiment shown in Figure 3d. F. Bezanilla kindly provided software for the Innovative Integrations board. This work was partially supported by US National Science Foundation grant IBN-0344070, NIH grant NS039405-06, NIH National Center for Research Resources, Research Centers in Minority Institutions grant G12RR03051 and the Intramural Research Program of the NIH, NINDS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joshua J C Rosenthal or Miguel Holmgren.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Amino acid sequence of squid Na+/K+ ATPase α subunit. (PDF 27 kb)

Supplementary Fig. 2

Amino acid sequence of squid Na+/K+ ATPase β subunit. (PDF 24 kb)

Supplementary Fig. 3

Quantification of α and β subunit mRNA in the giant axon system. (PDF 36 kb)

Supplementary Fig. 4

Functional expression of squid NsKα1 and NsKβ1 in Xenopus oocytes. (PDF 29 kb)

Supplementary Fig. 5

Enhancement of heterologous/endogenous expression ratio by making measurements exclusively in the oocyte's animal pole. (PDF 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colina, C., Rosenthal, J., DeGiorgis, J. et al. Structural basis of Na+/K+-ATPase adaptation to marine environments. Nat Struct Mol Biol 14, 427–431 (2007). https://doi.org/10.1038/nsmb1237

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1237

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing