Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Under DNA stress, gyrase makes the sign of the cross

In this issue, Nöllmann and colleagues report single-molecule analyses of DNA gyrase action on supercoiled DNA under different levels of strain. Surprisingly, they found that gyrase changes its reaction mechanism in response to changes in DNA strain. This explains the role of ATP in a branching topoisomerase reaction pathway and revisits an old puzzle about gyrase reversibility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gyrase reaction mechanism for producing and removing (−) supercoils.
Figure 2: Magnetic tweezers and rotating magnets create single-molecule substrates for DNA gyrase.
Figure 3: Pathways for relaxing (+) supercoils at low force (left) and at high force (right).

References

  1. Corbett, K.D., Shultzaberger, R.K. & Berger, J.M. Proc. Natl. Acad. Sci. USA 101, 7293–7298 (2004).

    Article  CAS  Google Scholar 

  2. Gore, J. et al. Nature 439, 100–104 (2006).

    Article  CAS  Google Scholar 

  3. Oram, M., Travers, A.A., Howells, A.J., Maxwell, A. & Pato, M.L. J. Bacteriol. 188, 619–632 (2006).

    Article  CAS  Google Scholar 

  4. Nöllmann, M. et al. Nat. Struct. Mol. Biol. 14, 264–271 (2007).

    Article  Google Scholar 

  5. Rybenkov, V.V., Vologodskii, A.V. & Cozzarelli, N.R. Nucleic Acids Res. 25, 1412–1418 (1997).

    Article  CAS  Google Scholar 

  6. Williams, N.L. & Maxwell, A. Biochemistry 38, 13502–13511 (1999).

    Article  CAS  Google Scholar 

  7. Dean, F.B. & Cozzarelli, N.R. J. Biol. Chem. 260, 4984–4994 (1985).

    CAS  PubMed  Google Scholar 

  8. Stone, M.D. et al. Proc. Natl. Acad. Sci. USA 100, 8654–8659 (2003).

    Article  CAS  Google Scholar 

  9. Jaworski, A., Higgins, N.P., Wells, R.D. & Zacharias, W. J. Biol. Chem. 266, 2576–2581 (1991).

    CAS  PubMed  Google Scholar 

  10. Champion, K. and Higgins, N.P., J. Bacteriol. (in the press)

  11. Aubry, A., Fisher, L.M., Jarlier, V. & Cambau, E. Biochem. Biophys. Res. Commun. 348, 158–165 (2006).

    Article  CAS  Google Scholar 

  12. Ju, B.-G. et al. Science 312, 1798–1802 (2006).

    Article  CAS  Google Scholar 

  13. Liu, L.F. & Wang, J.C. Proc. Natl. Acad. Sci. USA 84, 7024–7027 (1987).

    Article  CAS  Google Scholar 

  14. McClintock, B. Genetics 26, 234–282 (1941).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank M. Pato for critical reading of this manuscript. Work in the Higgins Laboratory is supported by US National Science Foundation grant MCB9122048 and US National Institutes of Health grant GM33143.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higgins, N. Under DNA stress, gyrase makes the sign of the cross. Nat Struct Mol Biol 14, 256–258 (2007). https://doi.org/10.1038/nsmb0407-256

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb0407-256

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing