Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The guanylate kinase domain of the MAGUK PSD-95 binds dynamically to a conserved motif in MAP1a

Abstract

The postsynaptic density protein PSD-95 and related membrane-associated guanylate kinases are scaffolding proteins, whose modular interaction motifs organize protein complexes at cell junctions. The signature guanylate kinase domain (GK) contains elements of the protein's GMP-binding site but does not bind nucleotide. Instead, the GK domain has evolved from an enzyme to a protein-protein interaction motif. Here, we show that this canonical GMP-binding region interacts with microtubule-associated protein-1a (MAP1a) and we present a structural model. We determine the consensus GK-binding sequence in MAP1a and demonstrate that PSD-95 can use a similar interaction mode to bind diverse protein partners. Furthermore, we show that PSD-95 GK has adopted the conformational flexibility of the ancestral enzyme to bind its varied ligands, which suggests a mechanism of regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Defining the GK-binding region of MAP1a.
Figure 2: 15N-1H HSQC titration experiments.
Figure 3: Binding curves for rhodamine-labeled MAP1a peptide interaction with wild-type and SH3-GK carrying mutations in the substrate-binding domain.
Figure 4: Defining the consensus sequence for GK interaction.
Figure 5: The dynamics of SH3-GK changes upon binding MAP1a.
Figure 6: Molecular model of MAP1a bound to GK.
Figure 7: Motions inherent in the GK domain.
Figure 8: A model for regulation of internetwork cross-talk.

Similar content being viewed by others

References

  1. Kuriyan, J. & Cowburn, D. Modular peptide recognition domains in eukaryotic signaling. Annu. Rev. Biophys. Biomol. Struct. 26, 259–288 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Lu, C.S., Hodge, J.J., Mehren, J., Sun, X.X. & Griffith, L.C. Regulation of the Ca2+/CaM-responsive pool of CaMKII by scaffold-dependent autophosphorylation. Neuron 40, 1185–1197 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Van Petegem, F., Clark, K.A., Chatelain, F.C. & Minor, D.L., Jr . Structure of a complex between a voltage-gated calcium channel beta-subunit and an alpha-subunit domain. Nature 429, 671–675 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Funke, L., Dakoji, S. & Bredt, D.S. Membrane-associated guanylate kinases regulate adhesion and plasticity at cell junctions. Annu. Rev. Biochem. 74, 219–245 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Tavares, G.A., Panepucci, E.H. & Brunger, A.T. Structural characterization of the intramolecular interaction between the SH3 and guanylate kinase domains of PSD-95. Mol. Cell 8, 1313–1325 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. McGee, A.W. et al. Structure of the SH3-guanylate kinase module from PSD-95 suggests a mechanism for regulated assembly of MAGUK scaffolding proteins. Mol. Cell 8, 1291–1301 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Woods, D.F., Hough, C., Peel, D., Callaini, G. & Bryant, P.J. Dlg protein is required for junction structure, cell polarity, and proliferation control in Drosophila epithelia. J. Cell Biol. 134, 1469–1482 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Hoskins, R., Hajnal, A.F., Harp, S.A. & Kim, S.K. The C. elegans vulval induction gene lin-2 encodes a member of the MAGUK family of cell junction proteins. Development 122, 97–111 (1996).

    CAS  PubMed  Google Scholar 

  9. Harris, B.Z. & Lim, W.A. Mechanism and role of PDZ domains in signaling complex assembly. J. Cell Sci. 114, 3219–3231 (2001).

    CAS  PubMed  Google Scholar 

  10. Brenman, J.E. et al. Localization of postsynaptic density-93 to dendritic microtubules and interaction with microtubule-associated protein 1A. J. Neurosci. 18, 8805–8813 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Szebenyi, G. et al. Activity-driven dendritic remodeling requires microtubule-associated protein 1A. Curr. Biol. 15, 1820–1826 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Kim, E. et al. GKAP, a novel synaptic protein that interacts with the guanylate kinase-like domain of the PSD-95/SAP90 family of channel clustering molecules. J. Cell Biol. 136, 669–678 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Tu, J.C. et al. Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron 23, 583–592 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Cho, W. Building signaling complexes at the membrane. Sci. STKE 2006, pe7 (2006).

    PubMed  Google Scholar 

  15. Cho, W. & Stahelin, R.V. Membrane-protein interactions in cell signaling and membrane trafficking. Annu. Rev. Biophys. Biomol. Struct. 34, 119–151 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Nooren, I.M. & Thornton, J.M. Diversity of protein-protein interactions. EMBO J. 22, 3486–3492 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Reese, M.L. & Dötsch, V. Fast mapping of protein-protein interfaces by NMR spectroscopy. J. Am. Chem. Soc. 125, 14250–14251 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Frank, R. The SPOT-synthesis technique. Synthetic peptide arrays on membrane supports–principles and applications. J. Immunol. Methods 267, 13–26 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Gerrow, K. et al. A preformed complex of postsynaptic proteins is involved in excitatory synapse development. Neuron 49, 547–562 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Post, C.B. Exchange-transferred NOE spectroscopy and bound ligand structure determination. Curr. Opin. Struct. Biol. 13, 581–588 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Battiste, J.L. & Wagner, G. Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear overhauser effect data. Biochemistry 39, 5355–5365 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Liang, B., Bushweller, J.H. & Tamm, L.K. Site-directed parallel spin-labeling and paramagnetic relaxation enhancement in structure determination of membrane proteins by solution NMR spectroscopy. J. Am. Chem. Soc. 128, 4389–4397 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Blaszczyk, J., Li, Y., Yan, H. & Ji, X. Crystal structure of unligated guanylate kinase from yeast reveals GMP-induced conformational changes. J. Mol. Biol. 307, 247–257 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Skrynnikov, N.R., Mulder, F.A., Hon, B., Dahlquist, F.W. & Kay, L.E. Probing slow time scale dynamics at methyl-containing side chains in proteins by relaxation dispersion NMR measurements: application to methionine residues in a cavity mutant of T4 lysozyme. J. Am. Chem. Soc. 123, 4556–4566 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Dominguez, C., Boelens, R. & Bonvin, A.M. HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc. 125, 1731–1737 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Olsen, O. & Bredt, D.S. Functional analysis of the nucleotide binding domain of membrane-associated guanylate kinases. J. Biol. Chem. 278, 6873–6878 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Sekulic, N., Shuvalova, L., Spangenberg, O., Konrad, M. & Lavie, A. Structural characterization of the closed conformation of mouse guanylate kinase. J. Biol. Chem. 277, 30236–30243 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Li, Y., Spangenberg, O., Paarmann, I., Konrad, M. & Lavie, A. Structural basis for nucleotide-dependent regulation of membrane-associated guanylate kinase-like domains. J. Biol. Chem. 277, 4159–4165 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Thomas, U., Phannavong, B., Muller, B., Garner, C.C. & Gundelfinger, E.D. Functional expression of rat synapse-associated proteins SAP97 and SAP102 in Drosophila dlg-1 mutants: effects on tumor suppression and synaptic bouton structure. Mech. Dev. 62, 161–174 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Masuko, N. et al. Interaction of NE-dlg/SAP102, a neuronal and endocrine tissue-specific membrane-associated guanylate kinase protein, with calmodulin and PSD-95/SAP90. A possible regulatory role in molecular clustering at synaptic sites. J. Biol. Chem. 274, 5782–5790 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Marfatia, S.M., Leu, R.A., Branton, D. & Chishti, A.H. Identification of the protein 4.1 binding interface on glycophorin C and p55, a homologue of the Drosophila discs-large tumor suppressor protein. J. Biol. Chem. 270, 715–719 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Paarmann, I., Spangenberg, O., Lavie, A. & Konrad, M. Formation of complexes between Ca2+·calmodulin and the synapse-associated protein SAP97 requires the SH3 domain-guanylate kinase domain-connecting HOOK region. J. Biol. Chem. 277, 40832–40838 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Klein, P., Pawson, T. & Tyers, M. Mathematical modeling suggests cooperative interactions between a disordered polyvalent ligand and a single receptor site. Curr. Biol. 13, 1669–1678 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Nash, P. et al. Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature 414, 514–521 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Hanada, T., Lin, L., Tibaldi, E.V., Reinherz, E.L. & Chishti, A.H. GAKIN, a novel kinesin-like protein associates with the human homologue of the Drosophila discs large tumor suppressor in T lymphocytes. J. Biol. Chem. 275, 28774–28784 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Deguchi, M. et al. BEGAIN (brain-enriched guanylate kinase-associated protein), a novel neuronal PSD-95/SAP90-binding protein. J. Biol. Chem. 273, 26269–26272 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Sabio, G. et al. p38gamma regulates the localisation of SAP97 in the cytoskeleton by modulating its interaction with GKAP. EMBO J. 24, 1134–1145 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Wu, H. et al. Intramolecular interactions regulate SAP97 binding to GKAP. EMBO J. 19, 5740–5751 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Ou, H.D., Lai, H.C., Serber, Z. & Dotsch, V. Efficient identification of amino acid types for fast protein backbone assignments. J. Biomol. NMR 21, 269–273 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Goto, N.K., Gardner, K.H., Mueller, G.A., Willis, R.C. & Kay, L.E. A robust and cost-effective method for the production of Val, Leu, Ile (delta 1) methyl-protonated 15N-, 13C-, 2H-labeled proteins. J. Biomol. NMR 13, 369–374 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Sali, A. & Blundell, T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Jorgenson, W.L. & Tirado-Rives, J. The OPLS potential functions for proteins. Energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 110, 1657–1666 (1988).

    Article  Google Scholar 

  45. Jorgenson, W.L., Chandrasekhar, J., Madura, J.D. & Impey, R.W. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article  Google Scholar 

  46. Kraulis, P. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst. 24, 946–950 (1991).

    Article  Google Scholar 

  47. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–8–27–8 (1996).

  48. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Gross for space and advice, and M. Bowen, M. Daugherty, S. Carter, J. Flinders, Q. Justman, E. LaDow, S. Newmyer, S. Pintchovski, M. Pufall and R. Yu for critical comments on the manuscript. This work was supported by grants from the Deutsche Forschungsgemeinschaft (SFB 628), the European Union (HPRI-CT-2001-50028) and the Center for Biomolecular Magnetic Resonance at the University of Frankfurt. M.L.R. was a US National Science Foundation Graduate Research Fellow and was a recipient of a Boehringer-Ingelheim Fonds Travel Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Dötsch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Titration of [15N]lysine-labeled SH3-GK with MAP1a peptide. (PDF 256 kb)

Supplementary Fig. 2

Peak assignment through mutation. (PDF 298 kb)

Supplementary Fig. 3

Orientation of MAP1a by paramagnetic relaxation enhancement. (PDF 131 kb)

Supplementary Fig. 4

[15N]tyrosine SH3-GK titration with MAP1a. (PDF 156 kb)

Supplementary Fig. 5

Top-scored models from docking simulations (PDF 1312 kb)

Supplementary Fig. 6

Analysis of matched cysteine mutations by fluorescence anisotropy. (PDF 135 kb)

Supplementary Fig. 7

Structural alignment of GK domains. (PDF 1029 kb)

Supplementary Fig. 8

Alignment of the SH3 and Hook domains of the neuronal MAGUK family. (PDF 350 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reese, M., Dakoji, S., Bredt, D. et al. The guanylate kinase domain of the MAGUK PSD-95 binds dynamically to a conserved motif in MAP1a. Nat Struct Mol Biol 14, 155–163 (2007). https://doi.org/10.1038/nsmb1195

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1195

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing