Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular recognition of histone H3 by the WD40 protein WDR5

Abstract

The WD40-repeat protein WDR5 is a conserved subunit of Trithorax (TRX) histone methyltransferase complexes. WDR5 has been reported to selectively bind dimethylated Lys4 (K4me2) in histone H3 to promote K4 trimethylation by TRX. To elucidate the basis of this binding specificity, we have determined the crystal structure of WDR5 bound to a histone H3 peptide bearing K4me2. The structure reveals that the N terminus of histone H3 binds as a 310-helix in the central depression formed by the WD40 repeats. R2 in histone H3 is bound in the acidic channel in the protein's core, whereas K4me2 is solvent exposed and does not engage in direct interactions with WDR5. Functional studies confirm that WDR5 recognizes A1, R2 and T3 in histone H3 but has virtually identical affinities for the unmodified and mono-, di- and trimethylated forms of K4, demonstrating that it does not discriminate among different degrees of methylation of this residue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of WDR5 bound to the N terminus of histone H3.
Figure 2: Recognition of the histone H3 N terminus by WDR5.
Figure 3: Analysis of the affinity of WDR5 for histone H3 peptides bearing different degrees of K4 methylation.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Luger, K. Structure and dynamic behavior of nucleosomes. Curr. Opin. Genet. Dev. 13, 127–135 (2003).

    Article  CAS  Google Scholar 

  2. Woodcock, C.L. Chromatin architecture. Curr. Opin. Struct. Biol. 16, 213–220 (2006).

    Article  CAS  Google Scholar 

  3. Iizuka, M. & Smith, M.M. Functional consequences of histone modifications. Curr. Opin. Genet. Dev. 13, 154–160 (2003).

    Article  CAS  Google Scholar 

  4. Fischle, W., Wang, Y. & Allis, C.D. Histone and chromatin cross-talk. Curr. Opin. Cell Biol. 15, 172–183 (2003).

    Article  CAS  Google Scholar 

  5. Zeng, L. & Zhou, M.M. Bromodomain: an acetyl-lysine binding domain. FEBS Lett. 513, 124–128 (2002).

    Article  CAS  Google Scholar 

  6. Brehm, A., Tufteland, K.R., Aasland, R. & Becker, P.B. The many colours of chromodomains. Bioessays 26, 133–140 (2004).

    Article  CAS  Google Scholar 

  7. Sims, R.J., III et al. Human but not yeast CHD1 binds directly and selectively to histone H3 methylated at lysine 4 via its tandem chromodomains. J. Biol. Chem. 280, 41789–41792 (2005).

    Article  CAS  Google Scholar 

  8. Huang, Y., Fang, J., Bedford, M.T., Zhang, Y. & Xu, R.M. Recognition of histone H3 lysine-4 methylation by the double tudor domain of JMJD2A. Science 312, 748–751 (2006).

    Article  CAS  Google Scholar 

  9. Wysocka, J. et al. WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 121, 859–872 (2005).

    Article  CAS  Google Scholar 

  10. Gori, F., Divieti, P. & Demay, M.B. Cloning and characterization of a novel WD-40 repeat protein that dramatically accelerates osteoblastic differentiation. J. Biol. Chem. 276, 46515–46522 (2001).

    Article  CAS  Google Scholar 

  11. Gori, F. & Demay, M.B. BIG-3, a novel WD-40 repeat protein, is expressed in the developing growth plate and accelerates chondrocyte differentiation in vitro. Endocrinology 145, 1050–1054 (2004).

    Article  CAS  Google Scholar 

  12. Gori, F. & Demay, M.B. The effects of BIG-3 on osteoblast differentiation are not dependent upon endogenously produced BMPs. Exp. Cell Res. 304, 287–292 (2005).

    Article  CAS  Google Scholar 

  13. Gori, F., Friedman, L. & Demay, M.B. Wdr5, a novel WD repeat protein, regulates osteoblast and chondrocyte differentiation in vivo. J. Musculoskelet. Neuronal Interact. 5, 338–339 (2005).

    CAS  PubMed  Google Scholar 

  14. Milne, T.A. et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol. Cell 10, 1107–1117 (2002).

    Article  CAS  Google Scholar 

  15. Nakamura, T. et al. ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol. Cell 10, 1119–1128 (2002).

    Article  CAS  Google Scholar 

  16. Goo, Y.H. et al. Activating signal cointegrator 2 belongs to a novel steady-state complex that contains a subset of trithorax group proteins. Mol. Cell. Biol. 23, 140–149 (2003).

    Article  CAS  Google Scholar 

  17. Wysocka, J., Myers, M.P., Laherty, C.D., Eisenman, R.N. & Herr, W. Human Sin3 deacetylase and trithorax-related Set1/Ash2 histone H3–K4 methyltransferase are tethered together selectively by the cell-proliferation factor HCF-1. Genes Dev. 17, 896–911 (2003).

    Article  CAS  Google Scholar 

  18. Hughes, C.M. et al. Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. Mol. Cell 13, 587–597 (2004).

    Article  CAS  Google Scholar 

  19. Yokoyama, A. et al. Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol. Cell. Biol. 24, 5639–5649 (2004).

    Article  CAS  Google Scholar 

  20. Milne, T.A. et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol. Cell 10, 1107–1117 (2002).

    Article  CAS  Google Scholar 

  21. Milne, T.A. et al. MLL associates specifically with a subset of transcriptionally active target genes. Proc. Natl. Acad. Sci. USA 102, 14765–14770 (2005).

    Article  CAS  Google Scholar 

  22. Guenther, M.G. et al. Global and Hox-specific roles for the MLL1 methyltransferase. Proc. Natl. Acad. Sci. USA 102, 8603–8608 (2005).

    Article  CAS  Google Scholar 

  23. Shannon, M.P., Kaufman, T.C., Shen, M.W. & Judd, B.H. Lethality patterns and morphology of selected lethal and semi-lethal mutations in the zeste-white region of Drosophila melanogaster. Genetics 72, 615–638 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hollmann, M., Simmerl, E., Schafer, U. & Schafer, M.A. The essential Drosophila melanogaster gene wds (will die slowly) codes for a WD-repeat protein with seven repeats. Mol. Genet. Genomics 268, 425–433 (2002).

    Article  CAS  Google Scholar 

  25. Nielsen, P.R. et al. Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9. Nature 416, 103–107 (2002).

    Article  CAS  Google Scholar 

  26. Jacobs, S.A. & Khorasanizadeh, S. Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science 295, 2080–2083 (2002).

    Article  CAS  Google Scholar 

  27. Schurter, B.T. et al. Methylation of histone H3 by coactivator-associated arginine methyltransferase 1. Biochemistry 40, 5747–5756 (2001).

    Article  CAS  Google Scholar 

  28. Wang, Y. et al. Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 306, 279–283 (2004).

    Article  CAS  Google Scholar 

  29. Cuthbert, G.L. et al. Histone deimination antagonizes arginine methylation. Cell 118, 545–553 (2004).

    Article  CAS  Google Scholar 

  30. Dai, J., Sultan, S., Taylor, S.S. & Higgins, J.M. The kinase haspin is required for mitotic histone H3 Thr 3 phosphorylation and normal metaphase chromosome alignment. Genes Dev. 19, 472–488 (2005).

    Article  CAS  Google Scholar 

  31. Fischle, W., Wang, Y. & Allis, C.D. Binary switches and modification cassettes in histone biology and beyond. Nature 425, 475–479 (2003).

    Article  CAS  Google Scholar 

  32. Lambright, D.G. et al. The 2.0 Å crystal structure of a heterotrimeric G protein. Nature 379, 311–319 (1996).

    Article  CAS  Google Scholar 

  33. Orlicky, S., Tang, X., Willems, A., Tyers, M. & Sicheri, F. Structural basis for phosphodependent substrate selection and orientation by the SCFCdc4 ubiquitin ligase. Cell 112, 243–256 (2003).

    Article  CAS  Google Scholar 

  34. Wu, G. et al. Structure of a beta-TrCP1-Skp1-beta-catenin complex: destruction motif binding and lysine specificity of the SCF(beta-TrCP1) ubiquitin ligase. Mol. Cell 11, 1445–1456 (2003).

    Article  CAS  Google Scholar 

  35. Verreault, A., Kaufman, P.D., Kobayashi, R. & Stillman, B. Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell 87, 95–104 (1996).

    Article  CAS  Google Scholar 

  36. Parthun, M.R., Widom, J. & Gottschling, D.E. The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism. Cell 87, 85–94 (1996).

    Article  CAS  Google Scholar 

  37. Verreault, A., Kaufman, P.D., Kobayashi, R. & Stillman, B. Nucleosomal DNA regulates the core-histone-binding subunit of the human Hat1 acetyltransferase. Curr. Biol. 8, 96–108 (1998).

    Article  CAS  Google Scholar 

  38. Zhang, Q., Vo, N. & Goodman, R.H. Histone binding protein RbAp48 interacts with a complex of CREB binding protein and phosphorylated CREB. Mol. Cell. Biol. 20, 4970–4978 (2000).

    Article  CAS  Google Scholar 

  39. Martinez-Balbas, M.A., Tsukiyama, T., Gdula, D. & Wu, C. Drosophila NURF-55, a WD repeat protein involved in histone metabolism. Proc. Natl. Acad. Sci. USA 95, 132–137 (1998).

    Article  CAS  Google Scholar 

  40. Zhang, Y., Iratni, R., Erdjument-Bromage, H., Tempst, P. & Reinberg, D. Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell 89, 357–364 (1997).

    Article  CAS  Google Scholar 

  41. Xue, Y. et al. NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol. Cell 2, 851–861 (1998).

    Article  CAS  Google Scholar 

  42. Zhang, Y., LeRoy, G., Seelig, H.P., Lane, W.S. & Reinberg, D. The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell 95, 279–289 (1998).

    Article  CAS  Google Scholar 

  43. Zhang, Y. et al. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev. 13, 1924–1935 (1999).

    Article  CAS  Google Scholar 

  44. Kuzmichev, A., Nishioka, K., Erdjument-Bromage, H., Tempst, P. & Reinberg, D. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev. 16, 2893–2905 (2002).

    Article  CAS  Google Scholar 

  45. Cao, R. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039–1043 (2002).

    Article  CAS  Google Scholar 

  46. Sewalt, R.G. et al. Characterization of interactions between the mammalian polycomb-group proteins Enx1/EZH2 and EED suggests the existence of different mammalian polycomb-group protein complexes. Mol. Cell. Biol. 18, 3586–3595 (1998).

    Article  CAS  Google Scholar 

  47. Montgomery, N.D. et al. The murine polycomb group protein Eed is required for global histone H3 lysine-27 methylation. Curr. Biol. 15, 942–947 (2005).

    Article  CAS  Google Scholar 

  48. Sheffield, P., Garrard, S. & Derewenda, Z. Overcoming expression and purification problems of RhoGDI using a family of “parallel” expression vectors. Protein Expr. Purif. 15, 34–39 (1999).

    Article  CAS  Google Scholar 

  49. Messerschmidt, A. & Pflugrath, J.W. Crystal orientation and X-ray pattern prediction routines for area-detector diffractometer systems in macromolecular crystallography. J. Appl. Crystallogr. 20, 306–315 (1987).

    Article  CAS  Google Scholar 

  50. Lambert, C., Leonard, N., De Bolle, X. & Depiereux, E. ESyPred3D: prediction of proteins 3D structures. Bioinformatics 18, 1250–1256 (2002).

    Article  CAS  Google Scholar 

  51. McCoy, A.J., Grosse-Kunstleve, R.W., Storoni, L.C. & Read, R.J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D Biol. Crystallogr. 61, 458–464 (2005).

    Article  Google Scholar 

  52. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  53. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  54. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  55. Fenn, T.D., Ringe, D. & Petsko, G.A. POVScript+: a program for model and data visualization using persistence of vision ray-tracing. J. Appl. Crystallogr. 36, 944–947 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Brunzelle for assistance in X-ray data collection, D. Peisach for assistance with rendering figures, D. Peisach for reading the manuscript and providing useful comments, the ESRF for provision of synchrotron radiation facilities and L. Serre and M. Walsh for their assistance in using beamlines FIP BM30A and BM14, respectively. Use of the University of Michigan DNA Sequencing Core was supported by the US National Institutes of Health through the University of Michigan's Cancer Center Support Grant (5 P30 CA46592). J.-F.C. is a Canadian Institutes of Health Research Postdoctoral Fellow. This work was supported by the University of Michigan's Office of the Vice President for Research and US National Institutes of Health grant GM073839 to R.C.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond C Trievel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Sequence alignment of metazoan orthologs of WDR5. (PDF 245 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Couture, JF., Collazo, E. & Trievel, R. Molecular recognition of histone H3 by the WD40 protein WDR5. Nat Struct Mol Biol 13, 698–703 (2006). https://doi.org/10.1038/nsmb1116

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1116

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing