Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nucleotide binding and hydrolysis induces a disorder-order transition in the kinesin neck-linker region

Abstract

Kinesin translocation is thought to occur by a conformational change in a region of the motor domain called the neck linker. However, most evidence supporting this hypothesis comes from monomeric constructs unable to move processively. To address this issue, we investigated the neck-linker configuration on microtubule-bound monomeric and dimeric kinesin constructs using single-molecule fluorescence polarization microscopy. We found that the neck-linker region (i) is very mobile in the absence of nucleotides and during steady walking, (ii) decreases mobility and aligns along the microtubule axis in the presence of AMPPNP or ADP+AlF4, (iii) is mostly ordered in the monomeric constructs in the presence of ADP+AlF4, and (iv) is closer to parallel to the microtubule axis in the dimeric constructs. These results support the proposed role of the neck linker and suggest a coordination mechanism between the two motor domains in the dimer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Probe locations.
Figure 2: Ensemble fluorescence anisotropy measurements, LD0, for the three kinesin constructs investigated in the presence of different nucleotides.
Figure 3: Single-molecule fluorescence intensity traces.
Figure 4: Single-molecule relative frequency distributions.
Figure 5: Neck-linker configuration models.

Similar content being viewed by others

References

  1. Goldstein, L.S. & Philp, A.V. The road less traveled: emerging principles of kinesin motor utilization. Annu. Rev. Cell Dev. Biol. 15, 141–183 (1999).

    Article  CAS  Google Scholar 

  2. Lawrence, C.J. et al. A standardized kinesin nomenclature. J. Cell Biol. 167, 19–22 (2004).

    Article  CAS  Google Scholar 

  3. Schnitzer, M.J. & Block, S.M. Kinesin hydrolyses one ATP per 8-nm step. Nature 388, 386–390 (1997).

    Article  CAS  Google Scholar 

  4. Coy, D.L., Wagenbach, M. & Howard, J. Kinesin takes one 8-nm step for each ATP that it hydrolyzes. J. Biol. Chem. 274, 3667–3671 (1999).

    Article  CAS  Google Scholar 

  5. Hua, W., Young, E.C., Fleming, M.L. & Gelles, J. Coupling of kinesin steps to ATP hydrolysis. Nature 388, 390–393 (1997).

    Article  CAS  Google Scholar 

  6. Asbury, C.L., Fehr, A.N. & Block, S.M. Kinesin moves by an asymmetric hand-over-hand mechanism. Science 302, 2130–2134 (2003).

    Article  CAS  Google Scholar 

  7. Kaseda, K., Higuchi, H. & Hirose, K. Alternate fast and slow stepping of a heterodimeric kinesin molecule. Nat. Cell Biol. 5, 1079–1082 (2003).

    Article  CAS  Google Scholar 

  8. Yildiz, A., Tomishige, M., Vale, R.D. & Selvin, P.R. Kinesin walks hand-over-hand. Science 303, 676–678 (2004).

    Article  CAS  Google Scholar 

  9. Rice, S. et al. A structural change in the kinesin motor protein that drives motility. Nature 402, 778–784 (1999).

    Article  CAS  Google Scholar 

  10. Vale, R.D. & Milligan, R.A. The way things move: looking under the hood of molecular motor proteins. Science 288, 88–95 (2000).

    Article  CAS  Google Scholar 

  11. Tomishige, M. & Vale, R.D. Controlling kinesin by reversible disulfide cross-linking. Identifying the motility-producing conformational change. J. Cell Biol. 151, 1081–1092 (2000).

    Article  CAS  Google Scholar 

  12. Skiniotis, G. et al. Nucleotide-induced conformations in the neck region of dimeric kinesin. EMBO J. 22, 1518–1528 (2003).

    Article  CAS  Google Scholar 

  13. Rosenfeld, S.S., Jefferson, G.M. & King, P.H. ATP reorients the neck linker of kinesin in two sequential steps. J. Biol. Chem. 276, 40167–40174 (2001).

    Article  CAS  Google Scholar 

  14. Sugata, K., Nakamura, M., Ueki, S., Fajer, P.G. & Arata, T. ESR reveals the mobility of the neck linker in dimeric kinesin. Biochem. Biophys. Res. Commun. 314, 447–451 (2004).

    Article  CAS  Google Scholar 

  15. Corrie, J.E. et al. Dynamic measurement of myosin light-chain-domain tilt and twist in muscle contraction. Nature 400, 425–430 (1999).

    Article  CAS  Google Scholar 

  16. Peterman, E.J., Sosa, H., Goldstein, L.S. & Moerner, W.E. Polarized fluorescence microscopy of individual and many kinesin motors bound to axonemal microtubules. Biophys. J. 81, 2851–2863 (2001).

    Article  CAS  Google Scholar 

  17. Jiang, W., Stock, M.F., Li, X. & Hackney, D.D. Influence of the kinesin neck domain on dimerization and ATPase kinetics. J. Biol. Chem. 272, 7626–7632 (1997).

    Article  CAS  Google Scholar 

  18. Asenjo, A.B., Krohn, N. & Sosa, H. Configuration of the two kinesin motor domains during ATP hydrolysis. Nat. Struct. Biol. 10, 836–842 (2003).

    Article  CAS  Google Scholar 

  19. Case, R.B., Pierce, D.W., Hom-Booher, N., Hart, C.L. & Vale, R.D. The directional preference of kinesin motors is specified by an element outside of the motor catalytic domain. Cell 90, 959–966 (1997).

    Article  CAS  Google Scholar 

  20. Sosa, H., Peterman, E.J., Moerner, W.E. & Goldstein, L.S. ADP-induced rocking of the kinesin motor domain revealed by single-molecule fluorescence polarization microscopy. Nat. Struct. Biol. 8, 540–544 (2001).

    Article  CAS  Google Scholar 

  21. Rice, S. et al. Thermodynamic properties of the kinesin neck-region docking to the catalytic core. Biophys. J. 84, 1844–1854 (2003).

    Article  CAS  Google Scholar 

  22. Forkey, J.N., Quinlan, M.E., Shaw, M.A., Corrie, J.E. & Goldman, Y.E. Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization. Nature 422, 399–404 (2003).

    Article  CAS  Google Scholar 

  23. Uemura, S. & Ishiwata, S. Loading direction regulates the affinity of ADP for kinesin. Nat. Struct. Biol. 10, 308–311 (2003).

    Article  CAS  Google Scholar 

  24. Rosenfeld, S.S., Fordyce, P.M., Jefferson, G.M., King, P.H. & Block, S.M. Stepping and stretching. How kinesin uses internal strain to walk processively. J. Biol. Chem. 278, 18550–18556 (2003).

    Article  CAS  Google Scholar 

  25. Cross, R.A. The kinetic mechanism of kinesin. Trends Biochem. Sci. 29, 301–309 (2004).

    Article  CAS  Google Scholar 

  26. Klumpp, L.M., Hoenger, A. & Gilbert, S.P. Kinesin's second step. Proc. Natl. Acad. Sci. USA 101, 3444–3449 (2004).

    Article  CAS  Google Scholar 

  27. Hackney, D.D., Stock, M.F., Moore, J. & Patterson, R.A. Modulation of kinesin half-site ADP release and kinetic processivity by a spacer between the head groups. Biochemistry 42, 12011–12018 (2003).

    Article  CAS  Google Scholar 

  28. Peterman, E.J., Sosa, H. & Moerner, W.E. Single-molecule fluorescence spectroscopy and microscopy of biomolecular motors. Annu. Rev. Phys. Chem. 55, 79–96 (2004).

    Article  CAS  Google Scholar 

  29. Sindelar, C.V. et al. Two conformations in the human kinesin power stroke defined by X-ray crystallography and EPR spectroscopy. Nat. Struct. Biol. 9, 844–848 (2002).

    CAS  PubMed  Google Scholar 

  30. Sosa, H. et al. A model for the microtubule-Ncd motor protein complex obtained by cryo-electron microscopy and image analysis. Cell 90, 217–224 (1997).

    Article  CAS  Google Scholar 

  31. Hoenger, A. et al. Image reconstructions of microtubules decorated with monomeric and dimeric kinesins: comparison with x-ray structure and implications for motility. J. Cell Biol. 141, 419–430 (1998).

    Article  CAS  Google Scholar 

  32. Kikkawa, M. et al. Switch-based mechanism of kinesin motors. Nature 411, 439–445 (2001).

    Article  CAS  Google Scholar 

  33. Romberg, L. & Vale, R.D. Chemomechanical cycle of kinesin differs from that of myosin. Nature 361, 168–170 (1993).

    Article  CAS  Google Scholar 

  34. Crevel, I.M., Lockhart, A. & Cross, R.A. Weak and strong states of kinesin and ncd. J. Mol. Biol. 257, 66–76 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Buster and D. Sharp for discussions and critical reading of the manuscript, R. Fenton for technical help and H. Deng and E. Nieves for mass spectrometry and analysis. This project was supported by a US National Institutes of Health grant (RO1-AR48620) to H.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hernando Sosa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

KM330_335 single-molecule frequency distributions (PDF 108 kb)

Supplementary Table 1

Kolmogorov-Smirnov statistical tests (PDF 104 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asenjo, A., Weinberg, Y. & Sosa, H. Nucleotide binding and hydrolysis induces a disorder-order transition in the kinesin neck-linker region. Nat Struct Mol Biol 13, 648–654 (2006). https://doi.org/10.1038/nsmb1109

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1109

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing