Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of Rac1 bound to its effector phospholipase C-β2

Abstract

Although diverse signaling cascades require the coordinated regulation of heterotrimeric G proteins and small GTPases, these connections remain poorly understood. We present the crystal structure of the GTPase Rac1 bound to phospholipase C-β2 (PLC-β2), a classic effector of heterotrimeric G proteins. Rac1 engages the pleckstrin-homology (PH) domain of PLC-β2 to optimize its orientation for substrate membranes. Gβγ also engages the PH domain to activate PLC-β2, and these two activation events are compatible, leading to additive stimulation of phospholipase activity. In contrast to PLC-δ, the PH domain of PLC-β2 cannot bind phosphoinositides, eliminating this mode of regulation. The structure of the Rac1–PLC-β2 complex reveals determinants that dictate selectivity of PLC-β isozymes for Rac GTPases over other Rho-family GTPases, and substitutions within PLC-β2 abrogate its stimulation by Rac1 but not by Gβγ, allowing for functional dissection of this integral signaling node.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of activated Rac1 in complex with PLC-β2.
Figure 2: Intermolecular interface of Rac1 and PLC-β2.
Figure 3: Electrostatic interactions restrict the specificity of GTPases for PLC-β2.
Figure 4: Mutagenesis of key interface residues reduces Rac-stimulated PLC-β2 activity.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Rhee, S.G. Regulation of phosphoinositide-specific phospholipase C. Annu. Rev. Biochem. 70, 281–312 (2001).

    Article  CAS  Google Scholar 

  2. Harden, T.K. & Sondek, J. Regulation of phospholipase C isozymes by Ras superfamily GTPases. Annu. Rev. Pharmacol. Toxicol. 46, 355–379 (2006).

    Article  CAS  Google Scholar 

  3. Singer, A.U., Waldo, G.L., Harden, T.K. & Sondek, J. A unique fold of phospholipase C-β mediates dimerization and interaction with Gαq. Nat. Struct. Biol. 9, 32–36 (2002).

    Article  CAS  Google Scholar 

  4. Zhang, Y., Vogel, W.K., McCullar, J.S., Greenwood, J.A. & Filtz, T.M. Phospholipase C-β3 and -β1 form homodimers, but not heterodimers, through catalytic and carboxyl-terminal domains. Mol. Pharmacol. 70, 860–868 (2006).

    Article  CAS  Google Scholar 

  5. Waldo, G.L., Boyer, J.L., Morris, A.J. & Harden, T.K. Purification of an AlF4 and G-protein βγ-subunit-regulated phospholipase C-activating protein. J. Biol. Chem. 266, 14217–14225 (1991).

    CAS  PubMed  Google Scholar 

  6. Taylor, S.J., Chae, H.Z., Rhee, S.G. & Exton, J.H. Activation of the β1 isozyme of phospholipase C by α subunits of the Gq class of G proteins. Nature 350, 516–518 (1991).

    Article  CAS  Google Scholar 

  7. Taylor, S.J. & Exton, J.H. Two α subunits of the Gq class of G proteins stimulate phosphoinositide phospholipase C-β1 activity. FEBS Lett. 286, 214–216 (1991).

    Article  CAS  Google Scholar 

  8. Smrcka, A.V., Hepler, J.R., Brown, K.O. & Sternweis, P.C. Regulation of polyphosphoinositide-specific phospholipase C-β activity by purified Gq. Science 251, 804–807 (1991).

    Article  CAS  Google Scholar 

  9. Smrcka, A.V. & Sternweis, P.C. Regulation of purified subtypes of phosphatidylinositol-specific phospholipase C β by G protein α and βγ subunits. J. Biol. Chem. 268, 9667–9674 (1993).

    CAS  PubMed  Google Scholar 

  10. Boyer, J.L., Waldo, G.L. & Harden, T.K. βγ-subunit activation of G-protein-regulated phospholipase C. J. Biol. Chem. 267, 25451–25456 (1992).

    CAS  PubMed  Google Scholar 

  11. Camps, M. et al. Stimulation of phospholipase C by guanine-nucleotide-binding protein βγ subunits. Eur. J. Biochem. 206, 821–831 (1992).

    Article  CAS  Google Scholar 

  12. Park, D., Jhon, D.Y., Lee, C.W., Lee, K.H. & Rhee, S.G. Activation of phospholipase C isozymes by G protein βγ subunits. J. Biol. Chem. 268, 4573–4576 (1993).

    CAS  PubMed  Google Scholar 

  13. Illenberger, D., Schwald, F. & Gierschik, P. Characterization and purification from bovine neutrophils of a soluble guanine-nucleotide-binding protein that mediates isozyme-specific stimulation of phospholipase C-β2. Eur. J. Biochem. 246, 71–77 (1997).

    Article  CAS  Google Scholar 

  14. Illenberger, D. et al. Stimulation of phospholipase C-β2 by the Rho GTPases Cdc42Hs and Rac1. EMBO J. 17, 6241–6249 (1998).

    Article  CAS  Google Scholar 

  15. Snyder, J.T., Singer, A.U., Wing, M.R., Harden, T.K. & Sondek, J. The pleckstrin homology domain of phospholipase C-β2 as an effector site for Rac. J. Biol. Chem. 278, 21099–21104 (2003).

    Article  CAS  Google Scholar 

  16. Illenberger, D., Walliser, C., Nurnberg, B., Diaz Lorente, M. & Gierschik, P. Specificity and structural requirements of phospholipase C-β stimulation by Rho GTPases versus G protein βγ dimers. J. Biol. Chem. 278, 3006–3014 (2003).

    Article  CAS  Google Scholar 

  17. Essen, L.O., Perisic, O., Cheung, R., Katan, M. & Williams, R.L. Crystal structure of a mammalian phosphoinositide-specific phospholipase C-δ. Nature 380, 595–602 (1996).

    Article  CAS  Google Scholar 

  18. Hemsath, L., Dvorsky, R., Fiegen, D., Carlier, M.F. & Ahmadian, M.R. An electrostatic steering mechanism of Cdc42 recognition by Wiskott-Aldrich syndrome proteins. Mol. Cell 20, 313–324 (2005).

    Article  CAS  Google Scholar 

  19. Carstanjen, D. et al. Rac2 regulates neutrophil chemotaxis, superoxide production, and myeloid colony formation through multiple distinct effector pathways. J. Immunol. 174, 4613–4620 (2005).

    Article  CAS  Google Scholar 

  20. Keller, P.J., Gable, C.M., Wing, M.R. & Cox, A.D. Rac3-mediated transformation requires multiple effector pathways. Cancer Res. 65, 9883–9890 (2005).

    Article  CAS  Google Scholar 

  21. Dvorsky, R. & Ahmadian, M.R. Always look on the bright site of Rho: structural implications for a conserved intermolecular interface. EMBO Rep. 5, 1130–1136 (2004).

    Article  CAS  Google Scholar 

  22. Ferguson, K.M., Lemmon, M.A., Schlessinger, J. & Sigler, P.B. Structure of the high affinity complex of inositol trisphosphate with a phospholipase C pleckstrin homology domain. Cell 83, 1037–1046 (1995).

    Article  CAS  Google Scholar 

  23. Garcia, P. et al. The pleckstrin homology domain of phospholipase C-δ1 binds with high affinity to phosphatidylinositol 4,5-bisphosphate in bilayer membranes. Biochemistry 34, 16228–16234 (1995).

    Article  CAS  Google Scholar 

  24. Runnels, L.W., Jenco, J., Morris, A. & Scarlata, S. Membrane binding of phospholipases C-β1 and C-β2 is independent of phosphatidylinositol 4,5-bisphosphate and the α and βγ subunits of G proteins. Biochemistry 35, 16824–16832 (1996).

    Article  CAS  Google Scholar 

  25. Singh, S.M. & Murray, D. Molecular modeling of the membrane targeting of phospholipase C pleckstrin homology domains. Protein Sci. 12, 1934–1953 (2003).

    Article  CAS  Google Scholar 

  26. Wang, T., Dowal, L., El-Maghrabi, M.R., Rebecchi, M. & Scarlata, S. The pleckstrin homology domain of phospholipase C-β2 links the binding of Gβγ to activation of the catalytic core. J. Biol. Chem. 275, 7466–7469 (2000).

    Article  CAS  Google Scholar 

  27. Lemmon, M.A. Pleckstrin homology domains: not just for phosphoinositides. Biochem. Soc. Trans. 32, 707–711 (2004).

    Article  CAS  Google Scholar 

  28. Abdul-Manan, N. et al. Structure of Cdc42 in complex with the GTPase-binding domain of the 'Wiskott-Aldrich syndrome' protein. Nature 399, 379–383 (1999).

    Article  CAS  Google Scholar 

  29. Mott, H.R. et al. Structure of the small G protein Cdc42 bound to the GTPase-binding domain of ACK. Nature 399, 384–388 (1999).

    Article  CAS  Google Scholar 

  30. Morreale, A. et al. Structure of Cdc42 bound to the GTPase binding domain of PAK. Nat. Struct. Biol. 7, 384–388 (2000).

    Article  CAS  Google Scholar 

  31. Garrard, S.M. et al. Structure of Cdc42 in a complex with the GTPase-binding domain of the cell polarity protein, Par6. EMBO J. 22, 1125–1133 (2003).

    Article  CAS  Google Scholar 

  32. Worthylake, D.K., Rossman, K.L. & Sondek, J. Crystal structure of Rac1 in complex with the guanine nucleotide exchange region of Tiam1. Nature 408, 682–688 (2000).

    Article  CAS  Google Scholar 

  33. Navaza, J. Implementation of molecular replacement in AMoRe. Acta Crystallogr. D Biol. Crystallogr. 57, 1367–1372 (2001).

    Article  CAS  Google Scholar 

  34. Hirshberg, M., Stockley, R.W., Dodson, G. & Webb, M.R. The crystal structure of human RAC1, a member of the Rho-family complexed with a GTP analogue. Nat. Struct. Biol. 4, 147–152 (1997).

    Article  CAS  Google Scholar 

  35. Schneider, T.R. & Sheldrick, G.M. Substructure solution with SHELXD. Acta Crystallogr. D Biol. Crystallogr. 58, 1772–1779 (2002).

    Article  Google Scholar 

  36. Potterton, E., McNicholas, S., Krissinel, E., Cowtan, K. & Noble, M. The CCP4 molecular-graphics project. Acta Crystallogr. D Biol. Crystallogr. 58, 1955–1957 (2002).

    Article  Google Scholar 

  37. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  38. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  39. Christopher, J.A. SPOCK: The Structural Properties Observation and Calculation Kit (The Center for Macromolecular Design, College Station, Texas, USA, 1998).

    Google Scholar 

  40. Bourdon, D.M., Wing, M.R., Edwards, E.B., Sondek, J. & Harden, T.K. Quantification of isozyme-specific activation of phospholipase C-β2 by Rac GTPases and phospholipase C-εby Rho GTPases in an intact cell assay system. Methods Enzymol. 406, 489–499 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Hicks for her valuable work on the apo structure of PLC-β2. This work was funded by the US National Institutes of Health (GM 057391).

Author information

Authors and Affiliations

Authors

Contributions

M.R.J., T.K.H. and J.S. conceived, analyzed and performed experiments and cowrote the manuscript. J.T.S. and S.G. assisted with construct design. J.T.S. and D.K.W. assisted with X-ray data collection and phasing.

Corresponding author

Correspondence to John Sondek.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Schematic of PH domain regulation. (PDF 8150 kb)

Supplementary Fig. 2

Sequence alignments of Rho GTPases and phospholipase C isozymes. (PDF 227 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jezyk, M., Snyder, J., Gershberg, S. et al. Crystal structure of Rac1 bound to its effector phospholipase C-β2. Nat Struct Mol Biol 13, 1135–1140 (2006). https://doi.org/10.1038/nsmb1175

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1175

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing