Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis of TEA blockade in a model potassium channel

Abstract

Potassium channels catalyze the selective transfer of potassium across the cell membrane and are essential for setting the resting potential in cells, controlling heart rate and modulating the firing pattern in neurons. Tetraethylammonium (TEA) blocks ion conduction through potassium channels in a voltage-dependent manner from both sides of the membrane. Here we show the structural basis of TEA blockade by cocrystallizing the prokaryotic potassium channel KcsA with two selective TEA analogs. TEA binding at both sites alters ion occupancy in the selectivity filter; these findings underlie the mutual destabilization and voltage-dependence of TEA blockade. We propose that TEA blocks potassium channels by acting as a potassium analog at the dehydration transition step during permeation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanism of permeation in potassium channels.
Figure 2: Structure of the selectivity filter in the presence of TBA.
Figure 3: Structure of the selectivity filter in the presence of TEAs.
Figure 4: Mechanism of TEA blockade.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Hille, B. Ion Channels of Excitable Membranes (Sinauer, Sunderland, Massachusetts, USA, 2001).

    Google Scholar 

  2. Armstrong, C.M. Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons. J. Gen. Physiol. 58, 413–437 (1971).

    Article  CAS  Google Scholar 

  3. Choi, K.L., Mossman, C., Aube, J. & Yellen, G. The internal quaternary ammonium receptor site of Shaker potassium channels. Neuron 10, 533–541 (1993).

    Article  CAS  Google Scholar 

  4. MacKinnon, R. & Yellen, G. Mutations affecting TEA blockade and ion permeation in voltage-activated K+ channels. Science 250, 276–279 (1990).

    Article  CAS  Google Scholar 

  5. Kavanaugh, M.P. et al. Interaction between tetraethylammonium and amino acid residues in the pore of cloned voltage-dependent potassium channels. J. Biol. Chem. 266, 7583–7587 (1991).

    CAS  PubMed  Google Scholar 

  6. Heginbotham, L., LeMasurier, M., Kolmakova-Partensky, L. & Miller, C. Single streptomyces lividans K+ channels: functional asymmetries and sidedness of proton activation. J. Gen. Physiol. 114, 551–560 (1999).

    Article  CAS  Google Scholar 

  7. Heginbotham, L. & MacKinnon, R. The aromatic binding site for tetraethylammonium ion on potassium channels. Neuron 8, 483–491 (1992).

    Article  CAS  Google Scholar 

  8. Crouzy, S., Berneche, S. & Roux, B. Extracellular blockade of K+ channels by TEA: results from molecular dynamics simulations of the KcsA channel. J. Gen. Physiol. 118, 207–217 (2001).

    Article  CAS  Google Scholar 

  9. Luzhkov, V.B. & Aqvist, J. Mechanisms of tetraethylammonium ion block in the KcsA potassium channel. FEBS Lett. 495, 191–196 (2001).

    Article  CAS  Google Scholar 

  10. Guidoni, L. & Carloni, P. Tetraethylammonium binding to the outer mouth of the KcsA potassium channel: implications for ion permeation. J. Recept. Signal Transduct. Res. 22, 315–331 (2002).

    Article  CAS  Google Scholar 

  11. Woodhull, A.M. Ionic blockage of sodium channels in nerve. J. Gen. Physiol. 61, 687–708 (1973).

    Article  CAS  Google Scholar 

  12. Spassova, M. & Lu, Z. Coupled ion movement underlies rectification in an inward-rectifier K+ channel. J. Gen. Physiol. 112, 211–221 (1998).

    Article  CAS  Google Scholar 

  13. Thompson, J. & Begenisich, T. External TEA block of Shaker K+ channels is coupled to the movement of K+ ions within the selectivity filter. J. Gen. Physiol. 122, 239–246 (2003).

    Article  CAS  Google Scholar 

  14. Kutluay, E., Roux, B. & Heginbotham, L. Rapid intracellular TEA block of the KcsA potassium channel. Biophys. J. 88, 1018–1029 (2005).

    Article  CAS  Google Scholar 

  15. Zhou, M., Morais-Cabral, J.H., Mann, S. & MacKinnon, R. Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors. Nature 411, 657–661 (2001).

    Article  CAS  Google Scholar 

  16. Newland, C.F., Adelman, J.P., Tempel, B.L. & Almers, W. Repulsion between tetraethyl-ammonium ions in cloned voltage-gated potassium channels. Neuron 8, 975–982 (1992).

    Article  CAS  Google Scholar 

  17. Thompson, J. & Begenisich, T. Interaction between quaternary ammonium ions in the pore of potassium channels. Evidence against an electrostatic repulsion mechanism. J. Gen. Physiol. 115, 769–782 (2000).

    Article  CAS  Google Scholar 

  18. Grissmer, S. & Cahalan, M. TEA prevents inactivation while blocking open K+ channels in human T lymphocytes. Biophys. J. 55, 203–206 (1989).

    Article  CAS  Google Scholar 

  19. Choi, K.L., Aldrich, R.W. & Yellen, G. Tetraethylammonium blockade distinguishes two inactivation mechanisms in voltage-activated K+ channels. Proc. Natl. Acad. Sci. USA 88, 5092–5095 (1991).

    Article  CAS  Google Scholar 

  20. Hoshi, T., Zagotta, W.N. & Aldrich, R.W. Two types of inactivation in Shaker K+ channels: effects of alterations in the carboxy-terminal region. Neuron 7, 547–556 (1991).

    Article  CAS  Google Scholar 

  21. Yellen, G., Sodickson, D., Chen, T.Y. & Jurman, M.E. An engineered cysteine in the external mouth of a K+ channel allows inactivation to be modulated by metal binding. Biophys. J. 66, 1068–1075 (1994).

    Article  CAS  Google Scholar 

  22. Liu, Y., Jurman, M.E. & Yellen, G. Dynamic rearrangement of the outer mouth of a K+ channel during gating. Neuron 16, 859–867 (1996).

    Article  CAS  Google Scholar 

  23. Ogielska, E.M. & Aldrich, R.W. Functional consequences of a decreased potassium affinity in a potassium channel pore. Ion interactions and C-type inactivation. J. Gen. Physiol. 113, 347–358 (1999).

    Article  CAS  Google Scholar 

  24. Lopez-Barneo, J., Hoshi, T., Heinemann, S.H. & Aldrich, R.W. Effects of external cations and mutations in the pore region on C-type inactivation of Shaker potassium channels. Receptors Channels 1, 61–71 (1993).

    CAS  PubMed  Google Scholar 

  25. Ogielska, E.M. et al. Cooperative subunit interactions in C-type inactivation of K channels. Biophys. J. 69, 2449–2457 (1995).

    Article  CAS  Google Scholar 

  26. Baukrowitz, T. & Yellen, G. Modulation of K+ current by frequency and external [K+]: a tale of two inactivation mechanisms. Neuron 15, 951–960 (1995).

    Article  CAS  Google Scholar 

  27. Baukrowitz, T. & Yellen, G. Use-dependent blockers and exit rate of the last ion from the multi-ion pore of a K+ channel. Science 271, 653–656 (1996).

    Article  CAS  Google Scholar 

  28. Zhou, Y., Morais-Cabral, J.H., Kaufman, A. & MacKinnon, R. Chemistry of ion coordination and hydration revealed by a K+ channel–Fab complex at 2.0 Å resolution. Nature 414, 43–48 (2001).

    Article  CAS  Google Scholar 

  29. Morais-Cabral, J.H., Zhou, Y. & MacKinnon, R. Energetic optimization of ion conduction rate by the K+ selectivity filter. Nature 414, 37–42 (2001).

    Article  CAS  Google Scholar 

  30. Zhou, Y. & MacKinnon, R. The occupancy of ions in the K+ selectivity filter: charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates. J. Mol. Biol. 333, 965–975 (2003).

    Article  CAS  Google Scholar 

  31. Roux, B. & MacKinnon, R. The cavity and pore helices in the KcsA K+ channel: electro-static stabilization of monovalent cations. Science 285, 100–102 (1999).

    Article  CAS  Google Scholar 

  32. Zhou, Y. & MacKinnon, R. Ion binding affinity in the cavity of the KcsA potassium channel. Biochemistry 43, 4978–4982 (2004).

    Article  CAS  Google Scholar 

  33. Berneche, S. & Roux, B. Energetics of ion conduction through the K+ channel. Nature 414, 73–77 (2001).

    Article  CAS  Google Scholar 

  34. Thoden, J.B. et al. Carbamoyl phosphate synthetase: caught in the act of glutamine hydrolysis. Biochemistry 37, 8825–8831 (1998).

    Article  CAS  Google Scholar 

  35. Ikeda, S.R. & Korn, S.J. Influence of permeating ions on potassium channel block by external tetraethylammonium. J. Physiol. 486, 267–272 (1995).

    Article  CAS  Google Scholar 

  36. Lu, Z., Klem, A.M. & Ramu, Y. Ion conduction pore is conserved among potassium channels. Nature 413, 809–813 (2001).

    Article  CAS  Google Scholar 

  37. Doyle, D.A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

    Article  CAS  Google Scholar 

  38. Friedrich, M.E.P. & Marvel, C.S. Reaction between alkali metal alkyls and quaternary arsonium compounds. J. Am. Chem. Soc. 52, 376–384 (1930).

    Article  CAS  Google Scholar 

  39. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallog. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  40. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macro-molecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  41. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  42. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallog. 24, 946–950 (1991).

    Article  Google Scholar 

  43. Merritt, E.A. & Bacon, D.J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Cieslak, D. Freymann, C. LaBonne, K. Swartz and J. Yeh for critical reading of the manuscript, and Z. Wawrzak for assistance with data collection. This work was supported by US National Institutes of Health grant GM58568 to A.G. Support from the R.H. Lurie Comprehensive Cancer Center of Northwestern University to the Structural Biology Facility is acknowledged. DND-CAT is supported by DuPont, Dow, the US National Science Foundation and the State of Illinois. Portions of this work were carried out at BioCARS (sector 14) and the Structural Biology Center (sector 19) at the Advanced Photon Source (APS). Use of the APS is supported by the US Department of Energy (contract W-31-109-Eng-38).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Gross.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lenaeus, M., Vamvouka, M., Focia, P. et al. Structural basis of TEA blockade in a model potassium channel. Nat Struct Mol Biol 12, 454–459 (2005). https://doi.org/10.1038/nsmb929

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb929

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing