Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nucleotide-dependent substrate recognition by the AAA+ HslUV protease

Abstract

ATP-dependent protein degradation is controlled principally by substrate recognition. The AAA+ HslU ATPase is thought to bind protein substrates, denature them, and translocate the unfolded polypeptide into the HslV peptidase. The lack of well-behaved high-affinity substrates for HslUV (ClpYQ) has hampered understanding of the rules and mechanism of substrate engagement. We show that HslUV efficiently degrades Arc repressor, especially at heat-shock temperatures. Degradation depends on sequences near the N terminus of Arc. Fusion protein and peptide-binding experiments demonstrate that this sequence is a degradation tag that binds directly to HslU. Strong binding of this tag to the enzyme requires ATP and Mg2+. Furthermore, fusion of this sequence to a protein with marked mechanical stability leads to complete degradation. Thus, these experiments demonstrate that HslUV is a powerful protein unfoldase and that initial substrate engagement by the HslU ATPase must occur after ATP binding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HslUV degradation of Arc repressor and variants.
Figure 2: HslUV degradation of Arc fusion proteins.
Figure 3: Mapping targeting signals for HslUV degradation.
Figure 4: Peptide binding and inhibition.
Figure 5: Nucleotide-dependent binding of the gt1 peptide and Arc to HslU.

Similar content being viewed by others

References

  1. Gottesman, S. Proteolysis in bacterial regulatory circuits. Annu. Rev. Cell Dev. Biol. 19, 565–587 (2003).

    Article  CAS  Google Scholar 

  2. Chiba, S., Akiyama, Y., Mori, H., Matsuo, E. & Ito, K. Length recognition at the N-terminal tail for the initiation of FtsH-mediated proteolysis. EMBO Rep. 1, 47–52 (2000).

    Article  CAS  Google Scholar 

  3. Bochtler, M., Ditzel, L., Groll, M. & Huber, R. Crystal structure of heat shock locus V (HslV) from Escherichia coli. Proc. Natl. Acad. Sci. USA 94, 6070–6074 (1997).

    Article  CAS  Google Scholar 

  4. Bochtler, M. et al. The structures of HslU and the ATP-dependent protease HslU-HslV. Nature 403, 800–805 (2000).

    Article  CAS  Google Scholar 

  5. Sousa, M.C., Kessler, B.M., Overkleeft, H.S. & McKay, D.B. Crystal structure of HslUV complexed with a vinyl sulfone inhibitor: corroboration of a proposed mechanism of allosteric activation of HslV by HslU. J. Mol. Biol. 318, 779–785 (2002).

    Article  CAS  Google Scholar 

  6. Sousa, M.C. et al. Crystal and solution structures of an HslUV protease–chaperone complex. Cell 103, 633–643 (2000).

    Article  CAS  Google Scholar 

  7. Song, H.K. et al. Mutational studies on HslU and its docking mode with HslV. Proc. Natl. Acad. Sci. USA 97, 14103–14108 (2000).

    Article  CAS  Google Scholar 

  8. Wang, J. et al. Nucleotide-dependent conformational changes in a protease-associated ATPase HslU. Structure 9, 1107–1116 (2001).

    Article  CAS  Google Scholar 

  9. Trame, C.B. & McKay, D.B. Structure of Haemophilus influenzae HslU protein in crystals with one-dimensional disorder twinning. Acta Crystallogr. D 57, 1079–1090 (2001).

  10. Rohrwild, M. et al. The ATP-dependent HslUV protease from Escherichia coli is a four-ring structure resembling the proteasome. Nat. Struct. Biol. 4, 133–139 (1997).

    Article  CAS  Google Scholar 

  11. Kanemori, M., Nishihara, K., Yanagi, H. & Yura, T. Synergistic roles of HslVU and other ATP-dependent proteases in controlling in vivo turnover of sigma32 and abnormal proteins in Escherichia coli. J. Bacteriol. 179, 7219–7225 (1997).

    Article  CAS  Google Scholar 

  12. Missiakas, D., Schwager, F., Betton, J.-M., Georgopoulos, C. & Rania, S. Identification and characterization of HslV HslU (ClpQ ClpY) proteins involved in overall proteolysis of misfolded proteins in Escherichia coli. EMBO J. 15, 6899–6909 (1996).

    Article  CAS  Google Scholar 

  13. Wu, W.-F., Zhou, Y. & Gottesman, S. Redundant in vivo proteolytic activities of Escherichia coli Lon and the ClpYQ (HslUV) protease. J. Bacteriol. 181, 3681–3687 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chuang, S. & Blattner, F.R. Characterization of twenty-six new heat shock genes of Escherichia coli. J. Bacteriol. 175, 5242–5252 (1993).

    Article  CAS  Google Scholar 

  15. Seong, I.S., Oh, J.Y., Yoo, S.J., Seol, J.H. & Chung, C.H. ATP-dependent degradation of SulA, a cell division inhibitor, by the HslUV protease in Escherichia coli. FEBS Lett. 456, 211–214 (1999).

    Article  CAS  Google Scholar 

  16. Nishii, W. & Takahashi, L. Determination of the cleavage sites in SulA, a cell division inhibitor, by the ATP-dependent HslVU protease from Escherichia coli. FEBS Lett. 553, 351–354 (2003).

    Article  CAS  Google Scholar 

  17. Kwon, A.R., Trame, C.B. & McKay, D.B. Kinetics of protein substrate degradation by HslUV. J. Struct. Biol. 146, 141–147 (2004).

    Article  CAS  Google Scholar 

  18. Waldburger, C.D., Schildbach, J.F. & Sauer, R.T. Are buried salt bridges important for protein stability and conformational specificity? Nat. Struct. Biol. 2, 122–128 (1995).

    Article  CAS  Google Scholar 

  19. Carrion-Vazquez, M. et al. Mechanical and chemical unfolding of a single protein: a comparison. Proc. Natl. Acad. Sci. USA 96, 3694–3699 (1999).

    Article  CAS  Google Scholar 

  20. Kenniston, J.A., Baker, T.A., Fernandez, J.M. & Sauer, R.T. Linkage between ATP consumption and mechanical unfolding during the protein processing reactions of an AAA+ degradation machine. Cell 114, 511–520 (2003).

    Article  CAS  Google Scholar 

  21. Breg, J.N., Opheusden, J.H.v., Burgering, M.J., Boelens, R. & Kaptein, R. Structure of Arc repressor in solution: evidence for a family of β-sheet DNA-binding proteins. Nature 346, 586–589 (1990).

    Article  CAS  Google Scholar 

  22. Milla, M.E. & Sauer, R.T. Critical side-chain interactions at a subunit interface in the Arc repressor dimer. Biochemistry 34, 3344–3351 (1995).

    Article  CAS  Google Scholar 

  23. Burgering, M.J.M., Hald, M., Boelens, R., Breg, J.N. & Kaptein, R. Hydrogen exchange studies of the Arc repressor: evidence for a monomeric folding intermediate. Biopolymers 35, 217–226 (1995).

    Article  CAS  Google Scholar 

  24. Schlieker, C. et al. Substrate recognition by the AAA+ chaperone ClpB. Nat. Struct. Mol. Biol. 11, 607–615 (2004).

    Article  CAS  Google Scholar 

  25. Siddiqui, S.M., Sauer, R.T. & Baker, T.A. Role of the processing pore of the ClpX AAA+ ATPase in the recognition and engagement of specific protein substrates. Genes Dev. 18, 369–374 (2004).

    Article  CAS  Google Scholar 

  26. Sondek, J., Lambright, D.G., Noel, J.P., Hamm, H.E. & Sigler, P.B. GTPase mechanism of G proteins from the 1.7-Å crystal structure of transducin α•GDP•AlF4. Nature 372, 276–279 (1994).

    Article  CAS  Google Scholar 

  27. Ishii, Y. et al. Regulatory role of C-terminal residues of SulA in its degradation by Lon protease in Escherichia coli. J. Biochem. 127, 837–844 (2000).

    Article  CAS  Google Scholar 

  28. Kwon, A.R., Kesseler, B.M., Overkleeft, H.S. & McKay, D.B. Structure and reactivity of an asymmetric complex between HslV and I-domain deleted HslU, a prokaryotic homolog of the eukaryotic proteasome. J. Mol. Biol. 330, 185–195 (2003).

    Article  CAS  Google Scholar 

  29. Levchenko, I., Seidel, M., Sauer, R.T. & Baker, T.A. A specificity-enhancing factor controls substrate delivery to the ClpXP degradation machine. Science 289, 2354–2356 (2000).

    Article  CAS  Google Scholar 

  30. Milla, M.E., Brown, B.M., Waldbuger, C.D. & Sauer, R.T. P22 Arc repressor: transition state properties inferred from mutational effects on the rates of protein unfolding and refolding. Biochemistry 39, 12494–12502 (1995).

    Google Scholar 

  31. Bowie, J.U. & Sauer, R.T. Equilibrium dissociation and unfolding of the Arc repressor dimer. Biochemistry 28, 7139–7143 (1989).

    Article  CAS  Google Scholar 

  32. Kim, Y.-I., Burton, R.E., Burton, B.M., Sauer, R.T. & Baker, T.A. Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. Mol. Cell 5, 639–648 (2000).

    Article  CAS  Google Scholar 

  33. Burton, R.E., Siddiqui, S.M., Kim, Y.-I., Baker, T.A. & Sauer, R.T. Effects of protein stability and structure on substrate processing by the ClpXP unfolding and degradation machine. EMBO J. 20, 3092–3100 (2001).

    Article  CAS  Google Scholar 

  34. Lee, C., Schwartz, M.P., Prakash, S., Iwakura, M. & Matouschek, A. ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal. Mol. Cell 7, 627–637 (2001).

    Article  CAS  Google Scholar 

  35. Kenniston, J.A., Burton, R.E., Siddiqui, S.M., Baker, T.A. & Sauer, R.T. Effects of local protein stability and the geometric position of the substrate degradation tag on the efficiency of ClpXP denaturation and degradation. J. Struct. Biol. 146, 130–140 (2004).

    Article  CAS  Google Scholar 

  36. Schildbach, J.F., Milla, M.E., Jeffrey, P.D., Raumann, B.E. & Sauer, R.T. Crystal structure, folding, and operator binding of the hyperstable Arc repressor mutant PL8. Biochemistry 34, 1405–1412 (1995).

    Article  CAS  Google Scholar 

  37. Robinson, C.R. & Sauer, R.T. Striking stabilization of Arc repressor by an engineered disulfide bond. Biochemistry 39, 12494–12502 (2000).

    Article  CAS  Google Scholar 

  38. Bolon, D.N., Grant, R.A., Baker, T.A. & Sauer, R.T. Nucleotide-dependent substrate handoff from the SspB adaptor to the AAA+ ClpXP protease. Mol. Cell 16, 343–350 (2004).

    Article  CAS  Google Scholar 

  39. Singh, S.K., Grimaud, R., Hoskins, J.R., Wickner, S. & Maurizi, M.R. Unfolding and internalization of proteins by the ATP-dependent proteases ClpXP and ClpAP. Proc. Natl. Acad. Sci. USA 97, 8898–8903 (2000).

    Article  CAS  Google Scholar 

  40. Gottesman, S., Roche, E., Zhou, Y. & Sauer, R.T. The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the ssrA-tagging system. Genes Dev. 12, 1338–1347 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Flynn and S. Siddiqui for materials and assistance with experiments and members of the Baker and Sauer labs for advice and comments. This work was supported by US National Institutes of Health grants AI-15706 and AI-16892. T.A.B. is an employee of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert T Sauer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burton, R., Baker, T. & Sauer, R. Nucleotide-dependent substrate recognition by the AAA+ HslUV protease. Nat Struct Mol Biol 12, 245–251 (2005). https://doi.org/10.1038/nsmb898

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb898

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing