Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pivotal role of the glycine-rich TM3 helix in gating the MscS mechanosensitive channel

Abstract

The crystal structure of an open form of the Escherichia coli MscS mechanosensitive channel was recently solved. However, the conformation of the closed state and the gating transition remain uncharacterized. The pore-lining transmembrane helix contains a conserved glycine- and alanine-rich motif that forms a helix-helix interface. We show that introducing 'knobs' on the smooth glycine face by replacing glycine with alanine, and substituting conserved alanines with larger residues, increases the pressure required for gating. Creation of a glycine-glycine interface lowers activation pressure. The importance of residues Gly104, Ala106 and Gly108, which flank the hydrophobic seal, is demonstrated. A new structural model is proposed for the closed-to-open transition that involves rotation and tilt of the pore-lining helices. Introduction of glycine at Ala106 validated this model by acting as a powerful suppressor of defects seen with mutations at Gly104 and Gly108.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interaction of conserved glycine-alanine pairs in TM3 of MscS.
Figure 2: Analysis of expression of MscS channels with TM3 mutations.
Figure 3: Introduction of mutations close to the seal reduces channel conductance.
Figure 4: The introduction of serine residues alters the gating pressure.
Figure 5: Structure of the MscS channel pore in the open and the putative closed states.
Figure 6: The A106V mutant exhibits two different open states.
Figure 7: A106G is a strong suppressor of mutations at Gly104 and Gly108.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Sackin, H. Mechanosensitive channels. Annu. Rev. Physiol. 57, 333–353 (1995).

    Article  CAS  Google Scholar 

  2. Hamill, O.P. & Martinac, B. Molecular basis of mechanotransduction in living cells. Physiol. Rev. 81, 685–740 (2001).

    Article  CAS  Google Scholar 

  3. Booth, I.R. Bacterial ion channels. In Genetic Engineering: Principles and Methods Vol. 25 (ed. Setlow, J.K.) 91–112 (Kluwer Academic/Plenum Publishers, New York, 2003).

    Chapter  Google Scholar 

  4. Sukharev, S.I., Blount, P., Martinac, B. & Kung, C. Mechanosensitive channels of Escherichia coli: the MscL gene, protein, and activities. Annu. Rev. Physiol. 59, 633–657 (1997).

    Article  CAS  Google Scholar 

  5. Perozo, E. & Rees, D.C. Structure and mechanism in prokaryotic mechanosensitive channels. Curr. Opin. Struct. Biol. 13, 432–442 (2003).

    Article  CAS  Google Scholar 

  6. Blount, P. Molecular mechanisms of mechanosensation: big lessons from small cells. Neuron 37, 731–734 (2003).

    Article  CAS  Google Scholar 

  7. Booth, I.R., Edwards, M.D. & Miller, S. Bacterial ion channels. Biochemistry 42, 10045–10053 (2003).

    Article  CAS  Google Scholar 

  8. Sukharev, S.I., Blount, P., Martinac, B., Blattner, F.R. & Kung, C.A. Large-conductance mechanosensitive channel in E. coli encoded by MscL alone. Nature 368, 265–268 (1994).

    Article  CAS  Google Scholar 

  9. Levina, N. et al. Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J. 18, 1730–1737 (1999).

    Article  CAS  Google Scholar 

  10. Li, Y., Moe, P.C., Chandrasekaran, S., Booth, I.R. & Blount, P. Ionic regulation of MscK, a mechanosensitive channel from Escherichia coli. EMBO J. 21, 5323–5330 (2002).

    Article  CAS  Google Scholar 

  11. Chang, G., Spencer, R.H., Lee, A.T., Barclay, M.T. & Rees, D.C. Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282, 2220–2226 (1998).

    Article  CAS  Google Scholar 

  12. Bass, R.B., Strop, P., Barclay, M. & Rees, D.C. Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science 298, 1582–1587 (2002).

    Article  CAS  Google Scholar 

  13. Blount, P., Sukharev, S.I., Moe, P.C., Nagle, S.K. & Kung, C. Towards an understanding of the structural and functional properties of MscL, a mechanosensitive channel in bacteria. Biol. Cell. 87, 1–8 (1996).

    Article  CAS  Google Scholar 

  14. Ou, X., Blount, P., Hoffman, R.J. & Kung, C. One face of a transmembrane helix is crucial in mechanosensitive channel gating. Proc. Natl. Acad. Sci. USA 95, 11471–11475 (1998).

    Article  CAS  Google Scholar 

  15. Sukharev, S., Durell, S.R. & Guy, H.R. Structural models of the MscL gating mechanism. Biophys. J. 81, 917–936 (2001).

    Article  CAS  Google Scholar 

  16. Perozo, E., Cortes, D.M., Sompornpisut, P., Kloda, A. & Martinac, B. Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418, 942–948 (2002).

    Article  CAS  Google Scholar 

  17. Anishkin, A. & Sukharev, S. Water dynamics and dewetting transitions in the small mechanosensitive channel MscS. Biophys. J. 86, 2883–2895 (2004).

    Article  CAS  Google Scholar 

  18. Sotomayor, M. & Schulten, K. Molecular dynamics study of gating in the mechanosensitive channel of small conductance MscS. Biophys. J. 87, 3050–3065 (2004).

    Article  CAS  Google Scholar 

  19. Miller, S. et al. Domain organization of the MscS mechanosensitive channel of Escherichia coli. EMBO J. 22, 36–46 (2003).

    Article  CAS  Google Scholar 

  20. Schumann, U., Edwards, M.D., Li, C. & Booth, I.R. The conserved carboxy-terminus of the MscS mechanosensitive channel is not essential but increases stability and activity. FEBS Lett. 572, 233–237 (2004).

    Article  CAS  Google Scholar 

  21. Miller, S., Edwards, M.D., Ozdemir, C. & Booth, I.R. The closed structure of the MscS mechanosensitive channel. Cross-linking of single cysteine mutants. J. Biol. Chem. 278, 32246–32250 (2003).

    Article  CAS  Google Scholar 

  22. Koprowski, P. & Kubalski, A. C-termini of the Escherichia coli mechanosensitive ion channel (MscS) move apart upon the channel opening. J. Biol. Chem. 278, 11237–11245 (2003).

    Article  CAS  Google Scholar 

  23. Pivetti, C.D. et al. Two families of mechanosensitive channel proteins. Microbiol. Mol. Biol. Rev. 67, 66–85 (2003).

    Article  CAS  Google Scholar 

  24. Blount, P., Schroeder, M.J. & Kung, C. Mutations in a bacterial mechanosensitive channel change the cellular response to osmotic stress. J. Biol. Chem. 272, 32150–32157 (1997).

    Article  CAS  Google Scholar 

  25. Okada, K., Moe, P.C. & Blount, P. Functional design of bacterial mechanosensitive channels. Comparisons and contrasts illuminated by random mutagenesis. J. Biol. Chem. 277, 27682–27688 (2002).

    Article  CAS  Google Scholar 

  26. Martinac, B., Buehner, M., Delcour, A.H., Adler, J. & Kung, C. Pressure-sensitive ion channel in Escherichia coli. Proc. Natl. Acad. Sci. USA 84, 2297–2301 (1987).

    Article  CAS  Google Scholar 

  27. Sukharev, S.I., Martinac, B., Arshavsky, V.Y. & Kung, C. Two types of mechanosensitive channels in the Escherichia coli cell envelope: solubilization and functional reconstitution. Biophys. J. 65, 177–183 (1993).

    Article  CAS  Google Scholar 

  28. Miller, S., Ness, L.S., Wood, C.M., Fox, B.C. & Booth, I.R. Identification of an ancillary protein, YabF, required for activity of the KefC glutathione-gated potassium efflux system in Escherichia coli. J. Bacteriol. 182, 6536–6540 (2000).

    Article  CAS  Google Scholar 

  29. Kim, S., Chamberlain, A.K. & Bowie, J.U. Membrane channel structure of Helicobacter pylori vacuolating toxin: Role of multiple G G motifs in cylindrical channels. Proc. Natl. Acad. Sci. USA 101, 5988–5991 (2004).

    Article  CAS  Google Scholar 

  30. Edwards, M.D., Booth, I.R. & Miller, S. Gating the mechanosensitive channels: MscS a new paradigm? Curr. Opin. Microbiol. 7, 163–167 (2004).

    Article  CAS  Google Scholar 

  31. McLaggan, D. et al. Analysis of the kefA2 mutation suggests that KefA is a cation-specific channel involved in osmotic adaptation in Escherichia coli. Mol. Microbiol. 43, 521–536 (2002).

    Article  CAS  Google Scholar 

  32. Liang, J. Experimental and computational studies of determinants of membrane-protein folding. Curr. Opin. Chem. Biol. 6, 878–884 (2002).

    Article  CAS  Google Scholar 

  33. Eilers, M., Patel, A.B., Liu, W. & Smith, S.O. Comparison of helix interactions in membrane and soluble alpha-bundle proteins. Biophys. J. 82, 2720–2736 (2002).

    Article  CAS  Google Scholar 

  34. Dawson, J.P., Weinger, J.S. & Engelman, D.M. Motifs of serine and threonine can drive association of transmembrane helices. J. Mol. Biol. 316, 799–805 (2002).

    Article  CAS  Google Scholar 

  35. Chervitz, S.A. & Falke, J.J. Molecular mechanism of transmembrane signaling by the aspartate receptor: a model. Proc. Natl. Acad. Sci. USA 93, 2545–2550 (1996).

    Article  CAS  Google Scholar 

  36. Bartlett, J.L., Levin, G. & Blount, P. An in vivo assay identifies changes in residue accessibility on mechanosensitive channel gating. Proc. Natl. Acad. Sci. USA 101, 10161–10165 (2004).

    Article  CAS  Google Scholar 

  37. Sukharev, S. Purification of the small mechanosensitive channel of Escherichia coli (MscS): the subunit structure, conduction, and gating characteristics in liposomes. Biophys. J. 83, 290–298 (2002).

    Article  CAS  Google Scholar 

  38. Blount, P., Sukharev, S.I., Schroeder, M.J., Nagle, S.K. & Kung, C. Single residue substitutions that change the gating properties of a mechanosensitive channel in Escherichia coli. Proc. Natl. Acad. Sci. USA 93, 11652–11657 (1996).

    Article  CAS  Google Scholar 

  39. Lowry, O., Rosebrough, N., Farr, A. & Randall, R. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951).

    CAS  PubMed  Google Scholar 

  40. Hamill, O.P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F.J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflug. Arch. Eur. J. Phy. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  41. Blount, P., Sukharev, S.I., Moe, P.C., Martinac, B. & Kung, C. Mechanosensitive channels of bacteria. Methods Enzymol. 294, 458–482 (1999).

    Article  CAS  Google Scholar 

  42. Bower, M.J., Cohen, F.E. & Dunbrack, R.L. Prediction of protein side-chain rotamers from a backbone-dependent rotamer library: A new homology modeling tool. J. Mol. Biol. 267, 1268–1282 (1997).

    Article  CAS  Google Scholar 

  43. Kim, S., Chamberlain, A.K. & Bowie, J.U. A simple method for modeling transmembrane helix oligomers. J. Mol. Biol. 329, 831–840 (2003).

    Article  CAS  Google Scholar 

  44. Kelley, L.A., Gardner, S.P. & Sutcliffe, M.J. An automated approach for clustering an ensemble of NMR-derived protein structures into conformationally related subfamilies. Protein Engineering 9, 1063–1065 (1996).

    Article  CAS  Google Scholar 

  45. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  46. Martz, E. Protein explorer: easy yet powerful macromolecular visualization. Trends Biochem. Sci. 27, 107–109 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by The Wellcome Trust (040174) (I.R.B., S.M. and M.D.E.), by the European Union Fifth Framework Programme (W.B.) (Hypersolutes; contract no. QLK3-CT-2000-00640), by the UK Biotechnology and Biological Sciences Research Council and Unilever (S.D. and S.B.), grants GM61028 and DK60818 from the US National Institutes of Health (NIH) (P.B.), grant I-1420 of the Welch Foundation (Y.L. and P.B.) and grant F49620-01-1-0503 of the Air Force Office of Scientific Review (I.I. and P.B.), and NIH grant R01 GM063919 (J.U.B.). The authors also thank L. Moir, P. Moe and U. Schumann for their contributions to this work. We thank S. Sukharev and D. Rees for preprints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian R Booth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edwards, M., Li, Y., Kim, S. et al. Pivotal role of the glycine-rich TM3 helix in gating the MscS mechanosensitive channel. Nat Struct Mol Biol 12, 113–119 (2005). https://doi.org/10.1038/nsmb895

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb895

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing