Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A conformational switch in the Piccolo C2A domain regulated by alternative splicing

Abstract

C2 domains are widespread Ca2+-binding modules. The active zone protein Piccolo (also known as Aczonin) contains an unusual C2A domain that exhibits a low affinity for Ca2+, a Ca2+-induced conformational change and Ca2+-dependent dimerization. We show here that removal of a nine-residue sequence by alternative splicing increases the Ca2+ affinity, abolishes the conformational change and abrogates dimerization of the Piccolo C2A domain. The NMR structure of the Ca2+-free long variant provides a structural basis for these different properties of the two splice forms, showing that the nine-residue sequence forms a β-strand otherwise occupied by a nonspliced sequence. Consequently, Ca2+-binding to the long Piccolo C2A domain requires a marked rearrangement of secondary structure that cannot occur for the short variant. These results reveal a novel mechanism of action of C2 domains and uncover a structural principle that may underlie the alteration of protein function by short alternatively spliced sequences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Alternative splicing of the Piccolo C2A domain.
Figure 2: The Ca2+-binding properties of the short Piccolo C2A domain resemble those typical of C2 domains.
Figure 3: The short and long Piccolo C2A domain variants have similar structures in the presence of Ca2+ but not in the absence of Ca2+.
Figure 4: The short Piccolo C2A domain exhibits Ca2+-dependent binding to negatively charged phospholipids with much higher apparent Ca2+ affinity and lower salt sensitivity than the long form.
Figure 5: Three-dimensional structure of the Ca2+-free long Piccolo C2A domain.
Figure 6: Nature of the Ca2+-induced conformational change in the long Piccolo C2A domain.
Figure 7: Conformational change in the top loops required for Ca2+ binding to the long Piccolo C2A domain.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Nalefski, E.A. & Falke, J.J. The C2 domain calcium-binding motif: structural and functional diversity. Protein Sci. 5, 2375–2390 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rizo, J. & Südhof, T.C. C2-domains, structure and function of a universal Ca2+-binding domain. J. Biol. Chem. 273, 15879–15882 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Fernandez-Chacon, R. et al. Synaptotagmin I functions as a calcium regulator of release probability. Nature 410, 41–49 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Südhof, T.C. Synaptotagmins: why so many? J. Biol. Chem. 277, 7629–7632 (2002).

    Article  PubMed  Google Scholar 

  6. Tucker, W.C. & Chapman, E.R. Role of synaptotagmin in Ca2+-triggered exocytosis. Biochem. J. 366, 1–13 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Davletov, B.A. & Südhof, T.C. A single C2 domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid binding. J. Biol. Chem. 268, 26386–26390 (1993).

    CAS  PubMed  Google Scholar 

  8. Li, C. et al. Ca(2+)-dependent and -independent activities of neural and non-neural synaptotagmins. Nature 375, 594–599 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Davis, A.F. et al. Kinetics of synaptotagmin responses to Ca2+ and assembly with the core SNARE complex onto membranes. Neuron 24, 363–376 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Fernandez, I. et al. Three-dimensional structure of the synaptotagmin-1 c(2)b-domain. synaptotagmin-1 as a phospholipid binding machine. Neuron 32, 1057–1069 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Sutton, R.B., Davletov, B.A., Berghuis, A.M., Südhof, T.C. & Sprang, S.R. Structure of the first C2 domain of synaptotagmin I: a novel Ca2+/phospholipid-binding fold. Cell 80, 929–938 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Shao, X., Fernandez, I., Südhof, T.C. & Rizo, J. Solution structures of the Ca2+-free and Ca2+-bound C2A domain of synaptotagmin I: does Ca2+ induce a conformational change? Biochemistry 37, 16106–16115 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Ubach, J., Zhang, X., Shao, X., Südhof, T.C. & Rizo, J. Ca2+ binding to synaptotagmin: how many Ca2+ ions bind to the tip of a C2-domain? EMBO J. 17, 3921–3930 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, X., Rizo, J. & Südhof, T.C. Mechanism of phospholipid binding by the C2A-domain of synaptotagmin I. Biochemistry 37, 12395–12403 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Shao, X. et al. Synaptotagmin-syntaxin interaction: the C2 domain as a Ca2+-dependent electrostatic switch. Neuron 18, 133–142 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Essen, L.O., Perisic, O., Lynch, D.E., Katan, M. & Williams, R.L. A ternary metal binding site in the C2 domain of phosphoinositide-specific phospholipase C-δ1. Biochemistry 36, 2753–2762 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Lomasney, J.W., Cheng, H.F., Roffler, S.R. & King, K. Activation of phospholipase C δ1 through C2 domain by a Ca(2+)-enzyme-phosphatidylserine ternary complex. J. Biol. Chem. 274, 21995–22001 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Perisic, O., Fong, S., Lynch, D.E., Bycroft, M. & Williams, R.L. Crystal structure of a calcium-phospholipid binding domain from cytosolic phospholipase A2. J. Biol. Chem. 273, 1596–1604 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Perisic, O., Paterson, H.F., Mosedale, G., Lara-Gonzalez, S. & Williams, R.L. Mapping the phospholipid-binding surface and translocation determinants of the C2 domain from cytosolic phospholipase A2. J. Biol. Chem. 274, 14979–14987 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Ubach, J., Garcia, J., Nittler, M.P., Südhof, T.C. & Rizo, J. Structure of the Janus-faced C2B domain of rabphilin. Nat. Cell Biol. 1, 106–112 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Uellner, R. et al. Perforin is activated by a proteolytic cleavage during biosynthesis which reveals a phospholipid-binding C2 domain. EMBO J. 16, 7287–7296 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Verdaguer, N., Corbalan-Garcia, S., Ochoa, W.F., Fita, I. & Gomez-Fernandez, J.C. Ca(2+) bridges the C2 membrane-binding domain of protein kinase Cα directly to phosphatidylserine. EMBO J. 18, 6329–6338 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gerber, S.H., Garcia, J., Rizo, J. & Südhof, T.C. An unusual C(2)-domain in the active-zone protein Piccolo: implications for Ca(2+) regulation of neurotransmitter release. EMBO J. 20, 1605–1619 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, X. et al. Aczonin, a 550-kD putative scaffolding protein of presynaptic active zones, shares homology regions with Rim and Bassoon and binds profilin. J. Cell Biol. 147, 151–162 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fenster, S.D. et al. Piccolo, a presynaptic zinc finger protein structurally related to bassoon. Neuron 25, 203–214 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Garner, C.C., Kindler, S. & Gundelfinger, E.D. Molecular determinants of presynaptic active zones. Curr. Opin. Neurobiol. 10, 321–327 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Shipston, M.J. Alternative splicing of potassium channels: a dynamic switch of cellular excitability. Trends Cell Biol. 11, 353–358 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Caceres, J.F. & Kornblihtt, A.R. Alternative splicing: multiple control mechanisms and involvement in human disease. Trends Genet. 18, 186–193 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Shao, X., Davletov, B.A., Sutton, R.B., Südhof, T.C. & Rizo, J. Bipartite Ca2+-binding motif in C2 domains of synaptotagmin and protein kinase C. Science 273, 248–251 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Sutton, R.B. & Sprang, S.R. Structure of the protein kinase Cβ phospholipid-binding C2 domain complexed with Ca2+. Structure. 6, 1395–1405 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Zucker, R.S. Short-term synaptic plasticity. Annu. Rev. Neurosci. 12, 13–31 (1989).

    Article  CAS  PubMed  Google Scholar 

  32. Dobrunz, L.E. & Stevens, C.F. Response of hippocampal synapses to natural stimulation patterns. Neuron 22, 157–166 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Dittman, J.S., Kreitzer, A.C. & Regehr, W.G. Interplay between facilitation, depression, and residual calcium at three presynaptic terminals. J. Neurosci. 20, 1374–1385 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guan, K.L. & Dixon, J.E. Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. Anal. Biochem. 192, 262–267 (1991).

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, O., Kay, L.E., Olivier, J.P. & Forman-Kay, J.D. Backbone 1H and 15N resonance assignments of the N-terminal SH3 domain of drk in folded and unfolded states using enhanced-sensitivity pulsed field gradient NMR techniques. J. Biomol. NMR 4, 845–858 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Kay, L.E., Xu, G.Y. & Yamazaki, T. Enhanced-sensitivity triple-resonance spectroscopy with minimal H2O saturation. J. Magn. Reson. A 109, 129–133 (1994).

    Article  CAS  Google Scholar 

  37. Muhandiram, D.R. & Kay, L.E. Gradient-enhanced triple-resonance three-dimensional NMR experiments with improved sensitivity. J. Magn. Reson. B 103, 203–216 (1994).

    Article  CAS  Google Scholar 

  38. Kay, L.E., Xu, G.Y., Singer, A.U., Muhandiram, D.R. & Forman-Kay, J.D. A gradient-enhanced HCCH-TOCSY experiment for recording side-chain 1H and 13C correlations in H2O samples of proteins. J. Magn. Reson. B 101, 333–337 (1993).

    Article  CAS  Google Scholar 

  39. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Johnson, B.A. & Blevins, R.A. NMRView: a computer program for the visualization and analysis of NMR data. J. Biomol. NMR 4, 603–614 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Cornilescu, G., Delaglio, F. & Bax, A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289–302 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Brunger, A.T. et al. Crystallography & NMR System: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Laskowski, R.A., Macarthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  44. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  45. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank I. Leznicki, A. Roth, and E. Borowicz for technical assistance, I. Fernandez for initial studies on the Ca2+ affinity of the Piccolo C2A domain and D. Myers for assistance with analytical ultracentrifugation. This study was supported by grants from the Welch Foundation (I-1304, J.R.), the Perot Family Foundation (T.C.S.), US National Institutes of Health grant NS40944 (J.R. and T.C.S.) and a fellowship from the Deutsche Forschungsgemeinschaft (S.H.G).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jesus Garcia or Thomas C Südhof.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia, J., Gerber, S., Sugita, S. et al. A conformational switch in the Piccolo C2A domain regulated by alternative splicing. Nat Struct Mol Biol 11, 45–53 (2004). https://doi.org/10.1038/nsmb707

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb707

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing