Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The C-terminal domain of apolipoprotein A-I contains a lipid-sensitive conformational trigger

Abstract

Exchangeable apolipoproteins can convert between lipid-free and lipid-associated states. The C-terminal domain of human apolipoprotein A-I (apoA-I) plays a role in both lipid binding and self-association. Site-directed spin-label electron paramagnetic resonance spectroscopy was used to examine the structure of the apoA-I C terminus in lipid-free and lipid-associated states. Nitroxide spin-labels positioned at defined locations throughout the C terminus were used to define discrete secondary structural elements. Magnetic interactions between probes localized at positions 163, 217 and 226 in singly and doubly labeled apoA-I gave inter- and intramolecular distance information, providing a basis for mapping apoA-I tertiary and quaternary structure. Spectra of apoA-I in reconstituted HDL revealed a lipid-induced transition of defined random coils and β-strands into α-helices. This conformational switch is analogous to triggered events in viral fusion proteins and may serve as a means to overcome the energy barriers of lipid sequestration, a critical step in cholesterol efflux and HDL assembly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Secondary structure analysis of lipid-free apoA-I residues 163–241.
Figure 2: Tertiary arrangement of apoA-I secondary structures.
Figure 3: Comparison of lipid-free and lipid-bound apoA-I structure.
Figure 4: Lipid-induced conformational transition of apoA-I and fusogenic subunit HA2 from influenza hemagglutinin.

Similar content being viewed by others

References

  1. Bodzioch, M. et al. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat. Genet. 22, 347–351 (1999).

    Article  CAS  Google Scholar 

  2. Lawn, R.M. et al. The Tangier disease gene product ABC1 controls the cellular apolipoprotein-mediated lipid removal pathway. J. Clin. Invest. 104, R25–R31 (1999).

    Article  CAS  Google Scholar 

  3. Fielding, C.J., Shore V.G. & Fielding, P.E. Lecithin:cholesterol acyltransferase: effects of substrate composition upon enzyme activity. Biochim. Biophys. Acta 270, 513–518 (1972).

    Article  CAS  Google Scholar 

  4. Gan, K.N., Smolen, A., Eckerson, H.W. & La Du, B.N. Purification of human serum paraoxonase/arylesterase. Evidence for one esterase catalyzing both activities. Drug Metab. Dispos. 19, 100–106 (1991).

    CAS  PubMed  Google Scholar 

  5. Xu, S. et al. Apolipoproteins of HDL can directly mediate binding to the scavenger receptor SR-BI, an HDL receptor that mediates selective lipid uptake. J. Lipid Res. 38, 1289–1298 (1997).

    CAS  PubMed  Google Scholar 

  6. Narayanaswami, V. & Ryan, R.O. Molecular basis of exchangeable apolipoprotein function. Biochim. Biophys. Acta. 1483, 15–36 (2000).

    Article  CAS  Google Scholar 

  7. Wang, J., Sykes, B.D. & Ryan, R.O. Structural basis for the conformational adaptability of apolipophorin III, a helix-bundle exchangeable apolipoprotein. Proc. Natl. Acad. Sci. USA 99, 1188–1193 (2002).

    Article  CAS  Google Scholar 

  8. Roberts, L.M. et al. Structural analysis of apolipoprotein A-I: limited proteolysis of methionine-reduced and -oxidized lipid-free and lipid-bound human apo A-I. Biochemistry 36, 7615–7624 (1997).

    Article  CAS  Google Scholar 

  9. Rogers, D.P., Roberts, L.M., Lebowitz, J., Engler, J.A. & Brouillette, C.G. Structural analysis of apolipoprotein A-I: effects of amino- and carboxy-terminal deletions on the lipid-free structure. Biochemistry 37, 945–955 (1998).

    Article  CAS  Google Scholar 

  10. Borhani, D.W., Rogers, D.P., Engler, J.A. & Brouillette, C.G. Crystal structure of truncated human apolipoprotein A-I suggests a lipid-bound conformation. Proc. Natl. Acad. Sci. USA 94, 12291–12296 (1997).

    Article  CAS  Google Scholar 

  11. Palgunachari, M.N. et al. Only the two end helixes of eight tandem amphipathic helical domains of human apo A-I have significant lipid affinity. Implications for HDL assembly. Arterioscler. Thromb. Vasc. Biol. 16, 328–338 (1996).

    Article  CAS  Google Scholar 

  12. Holvoet, P. et al. Phospholipid binding and lecithin-cholesterol acyltransferase activation properties of apolipoprotein A-I mutants. Biochemistry 34, 13334–13342 (1995).

    Article  CAS  Google Scholar 

  13. Minnich, A. et al. Site-directed mutagenesis and structure-function analysis of the human apolipoprotein A-I. Relation between lecithin-cholesterol acyltransferase activation and lipid binding. J. Biol. Chem. 267, 16553–16560 (1992).

    CAS  PubMed  Google Scholar 

  14. Vitello, L.B. & Scanu, A.M. Studies on human serum high density lipoproteins. Self-association of apolipoprotein A-I in aqueous solution. J. Biol. Chem. 251, 1131–1136 (1976).

    CAS  PubMed  Google Scholar 

  15. Laccotripe, M., Makrides, S.C., Jonas, A. & Zannis, V.I. The carboxyl-terminal hydrophobic residues of apolipoprotein A-I affect its rate of phospholipid binding and its association with high density lipoprotein. J. Biol. Chem. 272, 17511–17522 (1997).

    Article  CAS  Google Scholar 

  16. Davidson, W.S., Hazlett, T., Mantulin, W.W. & Jonas, A. The role of apolipoprotein AI domains in lipid binding. Proc. Natl. Acad. Sci. USA 93, 13605–13610 (1996).

    Article  CAS  Google Scholar 

  17. Hubbell, W.L., Cafiso, D.S. & Altenbach, C. Identifying conformational changes with site-directed spin labeling. Nat. Struct. Biol. 7, 735–739 (2000).

    Article  CAS  Google Scholar 

  18. Columbus, L. & Hubbell, W.L. A new spin on protein dynamics. Trends Biochem. Sci. 27, 288–295 (2002).

    Article  CAS  Google Scholar 

  19. Langen, R., Oh, K.J., Cascio, D. & Hubbell, W.L. Crystal structures of spin labeled T4 lysozyme mutants: implications for the interpretation of EPR spectra in terms of structure. Biochemistry 39, 8396–8405 (2000).

    Article  CAS  Google Scholar 

  20. Isas, J.M., Langen, R., Haigler, H.T. & Hubbell, W.L. Structure and dynamics of a helical hairpin and loop region in annexin 12: a site-directed spin labeling study. Biochemistry 41, 1464–1473 (2002).

    Article  CAS  Google Scholar 

  21. Segrest, J.P. et al. A detailed molecular belt model for apolipoprotein A-I in discoidal high density lipoprotein. J. Biol. Chem. 274, 31755–31758 (1999).

    Article  CAS  Google Scholar 

  22. Wiley, D.C. & Skehel, J.J. The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu. Rev. Biochem. 56, 365–394 (1987).

    Article  CAS  Google Scholar 

  23. Carr, C.M. & Kim, P.S. A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell 73, 823–832 (1993).

    Article  CAS  Google Scholar 

  24. Kozlov, M.M. & Chernomordik, L.V. A mechanism of protein-mediated fusion: coupling between refolding of the influenza hemagglutinin and lipid rearrangements. Biophys. J. 75, 1384–1396 (1998).

    Article  CAS  Google Scholar 

  25. Bentz, J. Membrane fusion mediated by coiled coils: a hypothesis. Biophys. J. 78, 886–900 (2000).

    Article  CAS  Google Scholar 

  26. Kammann, M., Laufs, J., Schell, J. & Gronenborn, B. Rapid insertional mutagenesis of DNA by polymerase chain reaction (PCR). Nucleic Acids Res. 17, 5404 (1989).

    Article  CAS  Google Scholar 

  27. Ryan, R.O., Forte, T.M. & Oda, M.N. Optimized bacterial expression of human apolipoprotein A-I. Protein Expr. Purif. 27, 98–103 (2002).

    Article  Google Scholar 

  28. Oda, M.N., Bielicki, J.K., Berger, T. & Forte, T.M. Cysteine substitutions in apolipoprotein A-I primary structure modulate paraoxonase activity. Biochemistry 40, 1710–1718 (2001).

    Article  CAS  Google Scholar 

  29. Nichols, A.V., Gong, E.L., Blanche, P.J. & Forte, T.M. Characterization of discoidal complexes of phosphatidylcholine, apolipoprotein A-I and cholesterol by gradient gel electrophoresis. Biochim. Biophys. Acta 750, 353–364 (1983).

    Article  CAS  Google Scholar 

  30. Froncisz, W. & Hyde, J.S. The loop-gap resonator: a new microwave lumped circuit ESR sample structure. J. Magn. Reson. 47, 515–521 (1982).

    CAS  Google Scholar 

  31. Hubbell, W.L., Froncisz, W. & Hyde, J.S. Continuous and stopped flow EPR spectrometer based on a loop gap resonator. Rev. Sci. Instrum. 58, 1879–1886 (1987).

    Article  Google Scholar 

  32. Chomiki, N., Voss, J.C. & Warden, C.H. Structure-function relationships in UCP1, UCP2 and chimeras: EPR analysis and retinoic acid activation of UCP2. Eur. J. Biochem. 268, 903–913 (2001).

    Article  CAS  Google Scholar 

  33. Oh, K.J., Altenbach, C., Collier, R.J. & Hubbell, W.L. Site-directed spin labeling of proteins. Applications to diphtheria toxin. Methods Mol. Biol. 145, 147–169 (2000).

    CAS  PubMed  Google Scholar 

  34. Wilson, I.A., Skehel, J.J. & Wiley, D.C. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3-Å resolution. Nature 289, 366–373 (1981).

    Article  CAS  Google Scholar 

  35. Bullough, P.A. et al. Crystals of a fragment of influenza haemagglutinin in the low pH induced conformation. J. Mol. Biol. 236, 1262–1265 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Crowe for his assistance with preliminary FTIR analyses. We would also like to thank B.J.S. Nitta for her critical advice and technical assistance, as well as C. Fang and C. Robertson for their valuable technical assistance. This work was supported by grants from NHLBI and American Heart Association, and by an award from the Pfizer Inc. Atorvastatin Research Awards Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael N Oda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oda, M., Forte, T., Ryan, R. et al. The C-terminal domain of apolipoprotein A-I contains a lipid-sensitive conformational trigger. Nat Struct Mol Biol 10, 455–460 (2003). https://doi.org/10.1038/nsb931

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb931

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing