Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Correction of disease-associated exon skipping by synthetic exon-specific activators

Abstract

Differential exon use is a hallmark of alternative splicing, a prevalent mechanism for generating protein isoform diversity. Many disease-associated mutations also affect pre-mRNA splicing, usually causing inappropriate exon skipping. SR proteins are essential splicing factors that recognize exonic splicing enhancers and drive exon inclusion. To emulate this function of SR proteins, we designed small chimeric effectors comprising a minimal synthetic RS domain covalently linked to an antisense moiety that targets an exon by Watson-Crick base pairing. Here we show that such synthetic effectors can mimic the functions of SR proteins and specifically restore wild type splicing when directed to defective BRCA1 or SMN2 pre-mRNA transcripts. This general approach can be used as a tool to investigate splicing mechanisms and modulate alternative splicing of specific genes, and as a therapeutic strategy to correct splicing defects responsible for numerous diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of synthetic compounds that specifically promote exon inclusion.
Figure 2: ESSENCE compounds restore BRCA1 E1694X splicing to wild type levels.
Figure 3: The RS minidomain is active in a phosphorylated state.
Figure 4: Rescue of SMN2 exon 7 splicing to SMN1 levels by ESSENCE.

References

  1. Burge, C.B., Tuschl, T. & Sharp, P.A. Splicing of precursors to messenger RNAs by the spliceosome. in The RNA World II (eds. Gesteland, R.F., Cech, T.R. & Atkins, J.F.) 525–560 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor; 1999).

    Google Scholar 

  2. Cartegni, L., Chew, S.L. & Krainer, A.R. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat. Rev. Genet. 3, 285–298 (2002).

    Article  CAS  Google Scholar 

  3. Maniatis, T. & Tasic, B. Alternative pre-mRNA splicing and proteome expansion in metazoans. Nature 418, 236–243 (2002).

    Article  CAS  Google Scholar 

  4. Graveley, B.R. Sorting out the complexity of SR protein functions. RNA 6, 1197–1211 (2000).

    Article  CAS  Google Scholar 

  5. Zhu, J., Mayeda, A. & Krainer, A.R. Exon identity established through differential antagonism between exonic splicing silencer-bound hnRNP A1 and enhancer-bound SR proteins. Mol. Cell 8, 1351–1361 (2001).

    Article  CAS  Google Scholar 

  6. Krawczak, M., Reiss, J. & Cooper, D.N. The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum. Genet. 90, 41–54 (1992).

    Article  CAS  Google Scholar 

  7. Ars, E. et al. Mutations affecting mRNA splicing are the most common molecular defects in patients with neurofibromatosis type 1. Hum. Mol. Genet. 9, 237–247 (2000).

    Article  CAS  Google Scholar 

  8. Teraoka, S.N. et al. Splicing defects in the ataxia-telangiectasia gene, ATM: underlying mutations and consequences. Am. J. Hum. Genet. 64, 1617–1631 (1999).

    Article  CAS  Google Scholar 

  9. Sierakowska, H., Gorman, L., Kang, S.H. & Kole, R. Antisense oligonucleotides and RNAs as modulators of pre-mRNA splicing. Methods Enzymol. 313, 506–521 (2000).

    Article  CAS  Google Scholar 

  10. Lacerra, G. et al. Restoration of hemoglobin A synthesis in erythroid cells from peripheral blood of thalassemic patients. Proc. Natl. Acad. Sci. USA 97, 9591–9596 (2000).

    Article  CAS  Google Scholar 

  11. Friedman, K.J. et al. Correction of aberrant splicing of the cystic fibrosis transmembrane conductance regulator (CFTR) gene by antisense oligonucleotides. J. Biol. Chem. 274, 36193–36199 (1999).

    Article  CAS  Google Scholar 

  12. Taylor, J.K., Zhang, Q.Q., Wyatt, J.R. & Dean, N.M. Induction of endogenous Bcl-xS through the control of Bcl-x pre-mRNA splicing by antisense oligonucleotides. Nat. Biotechnol. 17, 1097–1100 (1999).

    Article  CAS  Google Scholar 

  13. Wilton, S.D. et al. Specific removal of the nonsense mutation from the mdx dystrophin mRNA using antisense oligonucleotides. Neuromuscul. Disord. 9, 330–338 (1999).

    Article  CAS  Google Scholar 

  14. Epstein, P.M. Antisense inhibition of phosphodiesterase expression. Methods 14, 21–33 (1998).

    Article  CAS  Google Scholar 

  15. Celotto, A.M. & Graveley, B.R. Exon-specific RNAi: a tool for dissecting the functional relevance of alternative splicing. RNA 8, 718–724 (2002).

    Article  CAS  Google Scholar 

  16. Nakai, K. & Sakamoto, H. Construction of a novel database containing aberrant splicing mutations of mammalian genes. Gene 141, 171–177 (1994).

    Article  CAS  Google Scholar 

  17. Graveley, B.R. & Maniatis, T. Arginine/serine-rich domains of SR proteins can function as activators of pre-mRNA splicing. Mol. Cell. 1, 765–771 (1998).

    Article  CAS  Google Scholar 

  18. Zhu, J. & Krainer, A.R. Pre-mRNA splicing in the absence of an SR protein RS domain. Genes Dev. 14, 3166–3178 (2000).

    Article  CAS  Google Scholar 

  19. Cazalla, D. et al. Nuclear export and retention signals in the RS domain of SR proteins. Mol. Cell. Biol. 22, 6871–6882 (2002).

    Article  CAS  Google Scholar 

  20. Nielsen, P.E. Antisense properties of peptide nucleic acid. Methods Enzymol. 313, 156–164 (2000).

    Article  CAS  Google Scholar 

  21. Pooga, M. et al. Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo. Nat. Biotechnol. 16, 857–861 (1998).

    Article  CAS  Google Scholar 

  22. Sazani, P. et al. Nuclear antisense effects of neutral, anionic and cationic oligonucleotide analogs. Nucleic Acids Res. 29, 3965–3974 (2001).

    Article  CAS  Google Scholar 

  23. Tyler, B.M. et al. Peptide nucleic acids targeted to the neurotensin receptor and administered i.p. cross the blood-brain barrier and specifically reduce gene expression. Proc. Natl. Acad. Sci. USA 96, 7053–7058 (1999).

    Article  CAS  Google Scholar 

  24. Liu, H.X., Cartegni, L., Zhang, M.Q. & Krainer, A.R. A mechanism for exon skipping caused by nonsense or missense mutations in BRCA1 and other genes. Nat. Genet. 27, 55–58 (2001).

    Article  CAS  Google Scholar 

  25. Mazoyer, S. et al. A BRCA1 nonsense mutation causes exon skipping. Am. J. Hum. Genet. 62, 713–715 (1998).

    Article  CAS  Google Scholar 

  26. Cartegni, L. & Krainer, A.R. Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nat. Genet. 30, 377–384 (2002).

    Article  CAS  Google Scholar 

  27. Graveley, B.R., Hertel, K.J. & Maniatis, T. A systematic analysis of the factors that determine the strength of pre-mRNA splicing enhancers. EMBO J. 17, 6747–6756 (1998).

    Article  CAS  Google Scholar 

  28. Jablonka, S., Rossoll, W., Schrank, B. & Sendtner, M. The role of SMN in spinal muscular atrophy. J. Neurol. 247 (Suppl. 1), I37–I42 (2000).

    Article  Google Scholar 

  29. Monani, U.R. et al. A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum. Mol. Genet. 8, 1177–1183 (1999).

    Article  CAS  Google Scholar 

  30. Lorson, C.L., Hahnen, E., Androphy, E.J. & Wirth, B. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc. Natl. Acad. Sci. USA 96, 6307–6311 (1999).

    Article  CAS  Google Scholar 

  31. Hofmann, Y., Lorson, C.L., Stamm, S., Androphy, E.J. & Wirth, B. Htra2-β1 stimulates an exonic splicing enhancer and can restore full-length SMN expression to survival motor neuron 2 (SMN2). Proc. Natl. Acad. Sci. USA 97, 9618–9623 (2000).

    Article  CAS  Google Scholar 

  32. Young, P.J. et al. SRp30c-dependent stimulation of survival motor neuron (SMN) exon 7 inclusion is facilitated by a direct interaction with hTra2β1. Hum. Mol. Genet. 11, 577–587 (2002).

    Article  CAS  Google Scholar 

  33. Andreassi, C. et al. Aclarubicin treatment restores SMN levels to cells derived from type I spinal muscular atrophy patients. Hum. Mol. Genet. 10, 2841–2849 (2001).

    Article  CAS  Google Scholar 

  34. Chang, J.G. et al. Treatment of spinal muscular atrophy by sodium butyrate. Proc. Natl. Acad. Sci. USA 98, 9808–9813 (2001).

    Article  CAS  Google Scholar 

  35. Zhang, M.L., Lorson, C.L., Androphy, E.J. & Zhou, J. An in vivo reporter system for measuring increased inclusion of exon 7 in SMN2 mRNA: potential therapy of SMA. Gene Ther. 8, 1532–1538 (2001).

    Article  CAS  Google Scholar 

  36. Miyajima, H., Miyaso, H., Okumura, M., Kurisu, J. & Imaizumi, K. Identification of a cis-acting element for the regulation of SMN exon 7 splicing. J. Biol. Chem. 277, 23271–23277 (2002).

    Article  CAS  Google Scholar 

  37. Lim, S.R. & Hertel, K.J. Modulation of survival motor neuron pre-mRNA splicing by inhibition of alternative 3′ splice site pairing. J. Biol. Chem. 276, 45476–45483 (2001).

    Article  CAS  Google Scholar 

  38. Wagner, E.J. & Garcia-Blanco, M.A. Polypyrimidine tract binding protein antagonizes exon definition. Mol. Cell. Biol. 21, 3281–3288 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by the NIH. We thank L. Manche for technical assistance, and R. Del Vecchio, M. Hastings and B. Stillman for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian R. Krainer.

Ethics declarations

Competing interests

A patent application has been filed by the authors and Cold Spring Harbor Laboratory.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cartegni, L., Krainer, A. Correction of disease-associated exon skipping by synthetic exon-specific activators. Nat Struct Mol Biol 10, 120–125 (2003). https://doi.org/10.1038/nsb887

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb887

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing