Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The ligand-binding face of the semaphorins revealed by the high-resolution crystal structure of SEMA4D

Abstract

Semaphorins, proteins characterized by an extracellular sema domain, regulate axon guidance, immune function and angiogenesis. The crystal structure of SEMA4D (residues 1–657) shows the sema topology to be a seven-bladed β-propeller, revealing an unexpected homology with integrins. The sema β-propeller contains a distinctive 77-residue insertion between β-strands C and D of blade 5. Blade 7 is followed by a domain common to plexins, semaphorins and integrins (PSI domain), which forms a compact cysteine knot abutting the side of the propeller, and an Ig-like domain. The top face of the β-propeller presents prominent loops characteristic of semaphorins. In addition to limited contact between the Ig-like domains, the homodimer is stabilized through extensive interactions between the top faces in a sector of the β-propeller used for heterodimerization in integrins. This face of the propeller also mediates ligand binding in integrins, and functional data for semaphorin-receptor interactions map to the equivalent surface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The crystal structure of sSEMA4D.
Figure 2: Structural and sequence alignments of the semaphorins and integrins.
Figure 3: Functional information mapped to the sSEMA4D structure.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Kolodkin, A.L., Matthes, D.J. & Goodman, C.S. The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules. Cell 75, 1389–1399 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Semaphorin Nomenclature Committee (S.N.). Unified nomenclature for the semaphorins/collapsins. Cell 97, 551–552 (1999).

  3. Luo, Y., Raible, D. & Raper, J.A. Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell 75, 217–227 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Raper, J.A. Semaphorins and their receptors in vertebrates and invertebrates. Curr. Opin. Neurobiol. 10, 88–94 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Takahashi, T. et al. Plexin–neuropilin-1 complexes form functional semaphorin-3A receptors. Cell 99, 59–69 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Tamagnone, L. et al. Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates. Cell 99, 71–80 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. He, Z. & Tessier-Lavigne, M. Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell 90, 739–751 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Kolodkin, A.L. et al. Neuropilin is a semaphorin III receptor. Cell 90, 753–762 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Winberg, M.L. et al. Plexin A is a neuronal semaphorin receptor that controls axon guidance. Cell 95, 903–916 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Bork, P., Doerks, T., Springer, T.A. & Snel, B. Domains in plexins: links to integrins and transcription factors. Trends Biochem. Sci. 24, 261–263 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Xiong, J.P. et al. Crystal structure of the extracellular segment of integrin αVβ3. Science 294, 339–345 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hall, K.T. et al. Human CD100, a novel leukocyte semaphorin that promotes B-cell aggregation and differentiation. Proc. Natl. Acad. Sci. USA 93, 11780–11785 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shi, W. et al. The class IV semaphorin CD100 plays nonredundant roles in the immune system: defective B and T cell activation in CD100-deficient mice. Immunity 13, 633–642 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Kumanogoh, A. et al. Identification of CD72 as a lymphocyte receptor for the class IV semaphorin CD100: a novel mechanism for regulating B cell signaling. Immunity 13, 621–631 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Giordano, S. et al. The semaphorin 4D receptor controls invasive growth by coupling with Met. Nat. Cell. Biol. 4, 720–724 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Sprague, E.R., Redd, M.J., Johnson, A.D. & Wolberger, C. Structure of the C-terminal domain of Tup1, a corepressor of transcription in yeast. EMBO J. 19, 3016–3027 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wall, M.A. et al. The structure of the G protein heterotrimer Gi α1 β1 γ2. Cell 83, 1047–1058 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Sondek, J., Bohm, A., Lambright, D.G., Hamm, H.E. & Sigler, P.B. Crystal structure of a G-protein βγ dimer at 2.1 Å resolution. Nature 379, 369–374 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Stuart, D.I., Levine, M., Muirhead, H. & Stammers, D.K. Crystal structure of cat muscle pyruvate kinase at a resolution of 2.6 Å. J. Mol. Biol. 134, 109–142 (1979).

    Article  CAS  PubMed  Google Scholar 

  20. Calvete, J.J., Henschen, A. & Gonzalez-Rodriguez, J. Assignment of disulphide bonds in human platelet GPIIIa. A disulphide pattern for the β-subunits of the integrin family. Biochem. J. 274, 63–71 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Behar, O., Mizuno, K., Badminton, M. & Woolf, C.J. Semaphorin 3A growth cone collapse requires a sequence homologous to tarantula hanatoxin. Proc. Natl. Acad. Sci. USA 96, 13501–13505 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Klostermann, A., Lohrum, M., Adams, R.H. & Puschel, A.W. The chemorepulsive activity of the axonal guidance signal semaphorin D requires dimerization. J. Biol. Chem. 273, 7326–7331 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Koppel, A.M. & Raper, J.A. Collapsin-1 covalently dimerizes, and dimerization is necessary for collapsing activity. J. Biol. Chem. 273, 15708–15713 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Koppel, A.M., Feiner, L., Kobayashi, H. & Raper, J.A. A 70 amino acid region within the semaphorin domain activates specific cellular response of semaphorin family members. Neuron 19, 531–537 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Russell, R.B., Sasieni, P.D. & Sternberg, M.J. Supersites within superfolds. Binding site similarity in the absence of homology. J. Mol. Biol. 282, 903–918 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Pasterkamp, R.J. & Kolodkin, A.L. Semaphorin junction: making tracks toward neural connectivity. Curr. Opin. Neurobiol. 13, 79–89 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Kamata, T. & Takada, Y. Platelet integrin αIIbβ3–ligand interactions: what can we learn from the structure? Int. J. Hematol. 74, 382–389 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Xiong, J.P. et al. Crystal structure of the extracellular segment of integrin α Vβ3 in complex with an Arg-Gly-Asp ligand. Science 296, 151–155 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Davis, S.J. et al. High level expression in Chinese hamster ovary cells of soluble forms of CD4 T lymphocyte glycoprotein including glycosylation variants. J. Biol. Chem. 265, 10410–10418 (1990).

    CAS  PubMed  Google Scholar 

  30. Stanley, P. Selection of specific wheat germ agglutinin-resistant (WgaR) phenotypes from Chinese hamster ovary cell populations containing numerous lecR genotypes. Mol. Cell Biol. 1, 687–696 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. May, A.P. et al. Expression, crystallization, and preliminary X-ray analysis of a sialic acid-binding fragment of sialoadhesin in the presence and absence of ligand. Protein Sci. 6, 717–721 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Davis, S.J. et al. Crystallization and functional analysis of a soluble deglycosylated form of the human costimulatory molecule B7-1. Acta Crystallogr. D 57, 605–608 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Weeks, C.M. & Miller, R. The design and implementation of SnB version 2.0. J. Appl. Crystallogr. 32, 120–124 (1999).

    Article  CAS  Google Scholar 

  35. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Schneider, T.R. & Sheldrick, G.M. Substructure solution with SHELXD. Acta Crystallogr. D 58, 1772–1779 (2002).

    Article  PubMed  Google Scholar 

  37. Terwilliger, T.C. Automated main-chain model building by template matching and iterative fragment extension. Acta Crystallogr. D 59, 38–44 (2003).

    Article  PubMed  Google Scholar 

  38. Terwilliger, T.C. Automated side-chain model building and sequence assignment by template matching. Acta Crystallogr. D 59, 45–49 (2003).

    Article  PubMed  Google Scholar 

  39. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods of the building of proteins models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  40. Brunger, A.T. X-PLOR. Version 3.1. A System for X-ray Crystallography and NMR (Yale University Press, New Haven, Connecticut, USA, 1992).

    Google Scholar 

  41. Cowtan, K.D. & Zhang, K.Y. Density modification for macromolecular phase improvement. Prog. Biophys. Mol. Biol. 72, 245–270 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Morris, R.J., Perrakis, A. & Lamzin, V.S. ARP/wARP's model-building algorithms. I. The main chain. Acta Crystallogr. D 58, 968–975 (2002).

    Article  PubMed  Google Scholar 

  43. Navaza, J. Implementation of molecular replacement in AMoRe. Acta Crystallogr. D 57, 1367–1372 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Esnouf, R.M. Further additions to MolScript version 1.4, including reading and contouring of electron-density maps. Acta Crystallogr. D 55, 938–940 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Tomizawa, Y. et al. Inhibition of lung cancer cell growth and induction of apoptosis after reexpression of 3p21.3 candidate tumor suppressor gene SEMA3B. Proc. Natl. Acad. Sci. USA 98, 13954–13959 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xiang, R.H. et al. Isolation of the human semaphorin III/F gene (SEMA3F) at chromosome 3p21, a region deleted in lung cancer. Genomics 32, 39–48 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to R. Manso-Sancho for advice and assistance in protein expression, L. Lyne and W. Lu for cell culture, A. Chedatol and L. Tamagnone for biological assays of sSEMA4D, T. Batuwangala for additional work on semaphorins, N. Zaccai for data collection, J. Brown, J. Grimes and P. Roche for help with computation and S. Naylor for discussion. We thank M. Walsh and colleagues at BM14 as well as the staff of the ESRF and EMBL outstation in Grenoble. This work was funded by Cancer Research UK with additional support from the European Commission Integrated Program SPINE. D.I.S. and E.Y.J. are supported by the UK Medical Research Council and Cancer Research UK, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Yvonne Jones.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Love, C., Harlos, K., Mavaddat, N. et al. The ligand-binding face of the semaphorins revealed by the high-resolution crystal structure of SEMA4D. Nat Struct Mol Biol 10, 843–848 (2003). https://doi.org/10.1038/nsb977

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb977

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing