Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Analyzing protein functions in four dimensions

Abstract

Time-resolved structural studies on biomolecular function are coming of age. Focus has shifted from studies on 'systems of opportunities' to a more problem-oriented approach, addressing significant questions in biology and chemistry. An important step in this direction has been the use of physical and chemical trapping methods to capture and then freeze reaction intermediates in crystals. Subsequent monochromatic data collection at cryogenic temperatures can produce high resolution structures of otherwise elusive intermediates. The combination of diffraction methods with spectroscopic techniques provides a means to directly correlate electronic transitions with structural transitions in the sample, eliminating much of the guesswork from experiments. Studies on cytochrome P450, isopenicillin N synthase, cytochrome cd1 nitrite reductase, copper amine oxidase and bacteriorhodopsin were selected as examples, and the results are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The c-type cytochrome domain of cytochrome cd1 in three different states24.
Figure 2: First view of a bound dioxygen species at a copper center25.
Figure 3: The reaction cycle of cytochrome P450cam.
Figure 4: Light-induced structural changes during the photocycle of bacteriorhodpsins.

Similar content being viewed by others

References

  1. Hajdu, J., Acharya, K. R., Barford, D., Stuart, D. I. & Johnson, L. N. Catalysis in enzyme crystals. Trends Biochem. Sci. 13, 104–109 (1988).

    Article  CAS  Google Scholar 

  2. Hajdu, J. & Andersson, I. Fast crystallography and time-resolved structures. Annu. Rev. Biophys. Biomol. Struct. 22, 467–498 (1993).

    Article  CAS  Google Scholar 

  3. Schlichting, I. & Goody, R.S. Triggering methods in crystallographic enzyme kinetics. Methods Enzymol. 277, 467–490 (1997).

    Article  CAS  Google Scholar 

  4. Hadfield, A. T. & Hajdu, J. On the photochemical release of phosphate from 3,5-dinitrophenyl phosphate in a protein crystal. J. Mol. Biol. 236, 995–1000 (1994).

    Article  CAS  Google Scholar 

  5. Brubaker, M.J., Dyer, D.H., Stoddard, B. & Koshland, D.E. Synthesis, kinetics, and structural studies of a photolabile caged isocitrate: A catalytic trigger for isocitrate dehydrogenase. Biochemistry 35, 2854–2864 (1996).

    Article  CAS  Google Scholar 

  6. Schlichting, I., Berendzen, J., Phillips, G.N. & Sweet, R.M. Crystal-structure of photolyzed carbonmonoxy-myoglobin. Nature, 371, 808–812 (1994).

    Article  CAS  Google Scholar 

  7. Srajer, V. et al. Photolysis of the carbon-monoxide complex of myoglobin - nanosecond time-resolved crystallography. Science 274, 1726–1729 (1996).

    Article  CAS  Google Scholar 

  8. Genick, U.K. et al. Structure of a protein photocycle intermediate by millisecond time-resolved crystallography. Science 275, 1471–1475 (1997).

    Article  CAS  Google Scholar 

  9. Genick, U.K., Soltis, S.M., Kuhn, P., Canestrelli, I.L. & Getzoff, E.D. Structure at 0.85 Angstrom resolution of an early protein photocycle intermediate. Nature 392, 206–209 (1998).

    Article  CAS  Google Scholar 

  10. Stoddard, B.L. New results using Laue diffraction and time-resolved crystallography. Curr. Opin. Struct. Biol. 8, 612–618 (1998).

    Article  CAS  Google Scholar 

  11. Perman, B. et al. Energy transduction on the nanosecond time scale: Early structural events in a xanthopsin photocycle. Science 279, 1946–1950 (1998).

    Article  CAS  Google Scholar 

  12. Edman, K. et al. High-resolution X-ray structure of an early intermediate in the bacteriorhodopsin photocycle. Nature, 401, 822–826 (1999).

    Article  CAS  Google Scholar 

  13. Luecke, H., Schobert, B., Richter, H.T., Cartailler, J.P. & Lanyi, J.K. Structural changes in bacteriorhodopsin during ion transport at 2 Angstrom resolution. Science 286, 255–260 (1999).

    Article  CAS  Google Scholar 

  14. Chu, K. et al. Structure of a ligand-binding intermediate in wild-type carbonmonoxy myoglobin. Nature 403, 921–923 (2000).

    Article  CAS  Google Scholar 

  15. Royant, A. et al. Helix deformation is coupled to vectorial proton transport in the photocycle of bacteriorhodopsin. Nature 406, 645–648 (2000).

    Article  CAS  Google Scholar 

  16. Sass, H.J. et al. Structural alterations for proton translocation in the M state of wild type bacteriorhodopsin. Nature 406, 649–653 (2000).

    Article  CAS  Google Scholar 

  17. Schlichting, I. et al. The catalytic pathway of cytochrome P450cam at atomic resolution. Science 287, 1615–1622 (2000).

    Article  CAS  Google Scholar 

  18. Larsson, J. et al. Ultrafast structural changes measured by time-resolved X-ray diffraction. App. Phys. A 66, 587–591 (1998).

    Article  CAS  Google Scholar 

  19. Rischel, C. et al. Femtosecond time-resolved X-ray diffraction from laser-heated organic films. Nature 390, 490–492 (1997).

    Article  CAS  Google Scholar 

  20. Neutze, R. & Hajdu, J. Femtosecond time resolution in X-ray diffraction experiments. Proc. Natl. Acad. Sci. USA. 94, 5651–5655 (1997).

    Article  CAS  Google Scholar 

  21. Neutze, R., Wouts, R., van der Spoel, D., Weckert & E. Hajdu, J. Potential for femtosecond imaging of biomolecules with X-rays. Nature 406, 752–757 (2000).

    Article  CAS  Google Scholar 

  22. Zewail, A.H., Femtochemistry: Atomic-scale dynamics of the chemical bond. J. Phys. Chem. A104, 5660–5694 (2000).

    Article  Google Scholar 

  23. Gouet, P et al. Ferryl intermediates of catalase captured by time-resolved Weissenberg crystallography and UV-VIS spectroscopy. Nature Struct. Biol. 3, 951–956 (1996).

    Article  CAS  Google Scholar 

  24. Williams, P.A. et al. Heme ligand-switching during catalysis in crystals of a nitrogen cycle enzyme. Nature, 389, 406–412 (1997).

    Article  CAS  Google Scholar 

  25. Wilmot, C.M., Hajdu, J., McPherson, M.J., Knowles, P.F. & Phillips, S.E.V., Direct visualisation of dioxygen bound to a mononuclear copper centre during enzyme catalysis. Science 286, 1724–1728 (1999).

    Article  CAS  Google Scholar 

  26. Burzlaff, N.I et al. The reaction cycle of isopenicillin N synthase observed by X-ray diffraction. Nature 401, 721–724 (1999).

    Article  CAS  Google Scholar 

  27. Hajdu, J. et al. Catalysis in the crystal: Synchrotron radiation studies with glycogen phosphorylase b. EMBO J. 6, 539–546 (1987).

    Article  CAS  Google Scholar 

  28. Hajdu, J. et al. Millisecond X-ray diffraction: First electron density map from Laue photographs of a protein crystal. Nature 329, 178–181 (1987).

    Article  CAS  Google Scholar 

  29. Fülöp, V. et al. Laue diffraction study on the structure of cytochrome c peroxidase compound I. Structure 2, 201–208 (1994).

    Article  Google Scholar 

  30. Moffat, K. Time-resolved crystallography. Acta Crystallogr. A 54, 833–841 (1998).

    Article  CAS  Google Scholar 

  31. Hadfield, A. T. & Hajdu, J. A fast and portable micro-spectrophotometer for time-resolved X-ray diffraction experiments. J. Appl. Crystallogr. 26, 839–842 (1993).

    Article  CAS  Google Scholar 

  32. Mozzarelli, A. & Rossi, G.L. Protein function in the crystal. Annu. Rev. Biophys. Biomol. Struct. 25, 343–365 (1996).

    Article  CAS  Google Scholar 

  33. Ren, Z. et al. Laue crystallography: coming of age. J. Synchrotron Rad. 6, 891–917 (1999).

    Article  CAS  Google Scholar 

  34. Cruickshank, D. W. J., Helliwell, J. R. & Moffat, K. Multiplicity distribution of reflections in Laue diffraction. Acta Crystallogr. A 43, 656–674 (1987).

    Article  Google Scholar 

  35. Clifton, I. J., Elder, M. & Hajdu, J. Experimental strategies in Laue crystallography. J. Appl. Crystallogr. 24, 267–277 (1991).

    Article  CAS  Google Scholar 

  36. Fülöp, V., Moir, J. W. B., Ferguson, S. J. & Hajdu, J. The anatomy of a bifunctional enzyme: structural basis for reduction of oxygen to water and synthesis of nitric oxide by cytochrome cd1 . Cell 81, 369–377 (1995).

    Article  Google Scholar 

  37. Elove, G. A., Bhuyan, A. K. & Roder, H., Kinetic mechanism of cytochrome-c folding - involvement of the heme and its ligands. Biochemistry 33, 6925–6935 (1994).

    Article  CAS  Google Scholar 

  38. Ranghino, G. et al. Quantum mechanical interpretation of nitrite reduction by cytochrome cd1 nitrite reductase from Paracoccus pantotrophus. Biochemistry 39, 10958–10966 (2000).

    Article  CAS  Google Scholar 

  39. Allen, J.W.A., Watmough, N.J. & Ferguson, S.J., A switch in heme axial ligation prepares Paracoccus pantotrophus cytochrome cd1 for catalysis, Nature Struct. Biol. 7, 885–888 (2000).

    Article  CAS  Google Scholar 

  40. Klinman, J.P. Mechanisms whereby mononuclear copper proteins functionalize organic substrates. Chem. Rev. 96, 2541–2561 (1996)

    Article  CAS  Google Scholar 

  41. Wilmot C.M. et al. The catalytic mechanism of the quinoenzyme amine oxidase from Escherichia coli: Exploring the reductive half-reaction. Biochemistry 36, 1608–1620 (1997).

    Article  CAS  Google Scholar 

  42. Su, Q. & Klinman, J.P., Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase. Biochemistry 37, 12513–12525 (1998).

    Article  CAS  Google Scholar 

  43. Roach, P. L. et al. The crystal structure of isopenicillin N synthase, first of a new structural family of enzymes. Nature, 375, 700–704 (1995).

    Article  CAS  Google Scholar 

  44. Subramanian, S & Henderson, R. Molecular mechanism of vectorial proton translocation by bacteriorhodopsin. Nature 406, 653–657 (2000).

    Article  Google Scholar 

  45. Luecke, H. et al. Coupling photoisomerisation of retinal to directional transport in bacteriorhodopsin. J. Mol. Biol. 300, 1237–1255 (2000).

    Article  CAS  Google Scholar 

  46. Vonk, J. Structure of the bacteriorhodopsin mutant F219L N intermediate revealed by electron crystallography. EMBO J. 19, 2152–2160 (2000).

    Article  Google Scholar 

  47. Szöke, A. Time-resolved holographic diffraction at atomic resolution. Chem. Phys. Lett. 313, 777–788 (1999).

    Article  Google Scholar 

  48. Szöke, A. Holographic methods in X-ray crystallography. 2. Detailed theory and connection to other methods of crystallography. Act. Crystallogr. A 49, 853–866 (1993).

    Article  Google Scholar 

  49. Somoza, J.R. et al. Holographic methods in X-ray crystallography 4. A fast algorithm and its application to macromolecular crystallography. Acta Crystallogr. A 51, 691–708 (1995).

    Article  Google Scholar 

  50. Faigel, G. & Tegze, M. X-ray holography. Rep. Progr. Phys. 62, 355–393 (1999).

    Article  CAS  Google Scholar 

  51. Miao, J. W., Charalambous, P., Kirz, J. & Sayre, D. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400, 342–344 (1999).

    Article  CAS  Google Scholar 

  52. Winick, H., The linac coherent light source (LCLS): A fourth-generation light source using the SLAC linac. J. Elec. Spec. Rel. Phenom. 75, 1–8 (1995).

    Article  CAS  Google Scholar 

  53. Wiik, B. H. The TESLA project: an accelerator facility for basic science. Nucl. Inst. Meth. Phys. Res. B398, 1–8 (1997).

    Article  Google Scholar 

  54. Parsons M.R. et al. Crystal structure of a quinoenzyme: copper amine oxidase of Escherichia coli at 2 Å resolution. Structure 3, 1171–1184 (1995).

    Article  CAS  Google Scholar 

  55. Belrhali et al., Protein, lipid and water organization in bacteriorhodopsin crystals: a molecular view of the purple membrane at 1.9 Å resolution. Structure 7, 909–917 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swedish Research Councils, the EU-Biotech Programme STINT, EMBO and the BBSRC Structural Biology Initiative.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Janos Hajdu or Carrie M. Wilmot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hajdu, J., Neutze, R., Sjögren, T. et al. Analyzing protein functions in four dimensions. Nat Struct Mol Biol 7, 1006–1012 (2000). https://doi.org/10.1038/80911

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/80911

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing