Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular imaging of prostate cancer with 18F-fluorodeoxyglucose PET

Abstract

Prostate cancer poses a major public health problem, particularly in the US and Europe, where it constitutes the most common type of malignancy among men, excluding nonmelanoma skin cancers. The disease is characterized by a wide spectrum of biological and clinical phenotypes, and its evaluation by imaging remains a challenge in view of this heterogeneity. Imaging in prostate cancer can be used in the initial diagnosis of the primary tumor, to determine the occurrence and extent of any extracapsular spread, for guidance in delivery and evaluation of local therapy in organ-confined disease, in locoregional lymph node staging, to detect locally recurrent and metastatic disease in biochemical relapse, to predict and assess tumor response to systemic therapy or salvage therapy, and in disease prognostication (in terms of the length of time taken for castrate-sensitive disease to become refractory to hormones and overall patient survival). Evidence from animal-based translational and human-based clinical studies points to a potential and emerging role for PET, using F-fluorodeoxyglucose as a radiotracer, in the imaging evaluation of prostate cancer.

Key Points

  • Generally, high uptake of 18F-fluorodeoxyglucose (FDG) is expected in prostate tumors that are poorly differentiated, hypoxic and have a high Gleason score

  • Glucose metabolism in prostate tumors is modulated by androgen; FDG-PET can, therefore, be useful in monitoring response to androgen deprivation therapy

  • FDG-PET has limited use in diagnosis and staging of clinically organ-confined disease and can be falsely negative or falsely positive

  • FDG-PET might be useful for diagnosing and staging primary tumors, detecting locally recurrent and/or metastatic disease, assessing the extent of metabolically active castrate-resistant disease, monitoring treatment responses and in prognostication

  • Results from the NOPR show that FDG-PET influenced clinical management in 35.1% of prostate cancer cases

  • Different PET radiotracers are likely to be suited to various clinical states of prostate cancer, taking advantage of the most relevant biological markers of disease

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FDG-PET and CT scans of locally recurrent and metastatic prostate cancer.
Figure 2: Fused FDG-PET–CT scans in a patient with castrate-sensitive disease a | before and b | after androgen deprivation therapy.
Figure 3: Fused FDG-PET–CT scans in a patient with metastatic prostate cancer.

Similar content being viewed by others

References

  1. SEER: The Surveillance, Epidemiology, and End Results Program: Cancer of the Prostate Statistics 2008. http://seer.cancer.gov/statfacts/html/prost.html.

  2. Frank, I. N., Graham Jr, S. & Nabors, W. L. Urologic and Male Genital Cancers. In American Cancer Society Textbook of Clinical Oncology (Eds Holleb, A. I., Fink, D. J. & Murphy, G. P.) 280–283 (New York, American Cancer Society, 1991).

    Google Scholar 

  3. Kessler, B. & Albertsen, P. The natural history of prostate cancer. Urol. Clin. North Am. 30, 219–226 (2003).

    Article  PubMed  Google Scholar 

  4. Small, E. J. Prostate cancer: incidence, management and outcomes. Drugs Aging 13, 71–81 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Ploch, N. R. & Brawer, M. K. How to use prostate-specific antigen. Urology 43 (2 Suppl.), 27–35 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Lukes, M. et al. Prostate-specific antigen: current status. Folio Biol. (Praha) 47, 41–49 (2001).

    CAS  Google Scholar 

  7. Boccon-Gibod, L. Prostate-specific antigen or PSA. Facts and probabilities [French]. Presse Med. 24, 1471–1472 (1995).

    CAS  PubMed  Google Scholar 

  8. Safa, A. A. et al. Undetectable serum prostate-specific antigen associated with metastatic prostate cancer: a case report and review of the literature. Am. J. Clin. Oncol. 21, 323–326 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Sella, A. et al. Low PSA metastatic androgen-independent prostate cancer. Eur. Urol. 38, 250–254 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Beardo, P. et al. Undetectable prostate specific antigen in disseminated prostate cancer. J. Urol. 166, 993 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Lofters, A. et al. “PSA-itis”: knowledge of serum prostate specific antigen and other causes of anxiety in men with metastatic prostate cancer. J. Urol. 168, 2516–2520 (2002).

    Article  PubMed  Google Scholar 

  12. Dong, J. T. et al. Prostate cancer—biology of metastasis and its clinical implications. World J. Urol. 14, 182–189 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Yu, K. K. & Hricak, H. Imaging prostate cancer. Radiol. Clin. North Am. 38, 59–85 (2000).

    Article  PubMed  Google Scholar 

  14. Yu, K. K. & Hawkins, R. A. The prostate: diagnostic evaluation of metastatic disease. Radiol. Clin. North Am. 38, 139–157 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Dotan, Z. A. Bone imaging in prostate cancer. Nat. Clin. Pract. Urol. 5, 434–444 (2008).

    Article  PubMed  Google Scholar 

  16. Fair, W. R., Israeli, R. S. & Heston, W. D. Prostate-specific membrane antigen. Prostate 32, 140–148 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Haseman, M. K., Rosenthal, S. A. & Polascik, T. J. Capromab pendetide imaging of prostate cancer. Cancer Biother. Radiopharm. 15, 131–140 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Harisinghani, M. G. et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med. 348, 2491–2499 (2003).

    Article  PubMed  Google Scholar 

  19. Phelps, M. E. PET: the merging of biology and imaging into molecular imaging. J. Nucl. Med. 41, 661–681 (2000).

    CAS  PubMed  Google Scholar 

  20. Gambhir, S. S. Molecular imaging of cancer with positron emission tomography. Nat. Rev. Cancer 2, 683–693 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Basu, S. & Alavi, A. Unparalleled contribution of 18F-FDG PET to medicine over 3 decades. J. Nucl. Med. 49, 17N–21N, 37N (2008).

    Article  PubMed  Google Scholar 

  22. National Oncologic PET Registry. http://www.cancerPETregistry.org.

  23. Hillner, B. E. et al. Impact of positron emission tomography/computed tomography and positron mission tomography (PET) alone on expected management of patients with cancer: initial results from the National Oncologic PET Registry. J. Clin. Oncol. 26, 4229 (2008).

    Article  Google Scholar 

  24. Hillner, B. E. et al. Relationship between cancer type and impact of PET and PET/CT on intended management: findings of the National Oncologic PET Registry. J. Nucl. Med. 49, 1928–1935 (2008).

    Article  PubMed  Google Scholar 

  25. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Gambhir, S. S. Molecular imaging of cancer: from molecules to humans. Introduction. J. Nucl. Med. 49 (Suppl. 2), 1S–4S (2008).

    Article  PubMed  Google Scholar 

  27. Haberkorn, U. et al. FDG uptake, tumor proliferation and expression of glycolysis associated genes in animal tumor models. Nucl. Med. Biol. 21, 827–834 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Clavo, A. C., Brown, R. S. & Wahl, R. L. Fluorodeoxyglucose uptake in human cancer cell lines is increased by hypoxia. J. Nucl. Med. 36, 1625–1632 (1995).

    CAS  PubMed  Google Scholar 

  29. Pauwels, E. K. et al. FDG accumulation and tumor biology. Nucl. Med. Biol. 25, 317–322 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Mochizuki, T. et al. FDG uptake and glucose transporter subtype expression in experimental tumor and inflammation models. J. Nucl. Med. 42, 1551–1555 (2001).

    CAS  PubMed  Google Scholar 

  31. Gillies, R. J., Robey, I. & Gatenby, R. A. Causes and consequences of increased glucose metabolism of cancers. J. Nucl. Med. 49 (6 Suppl.), 24S–42S (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Plathow, C. & Weber, W. A. Tumor cell metabolism imaging. J. Nucl. Med. 49 (6 Suppl.), 43S–63S (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Gatenby, R. A. & Gillies, R. J. A microenvironmental model of carcinogenesis. Nat. Rev. Cancer 8, 56–61 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. uman Genome Organisation (HUGO) Gene Nomenclature Committee. http://www.genenames.org.

  35. Macheda, M. L., Rogers, S. & Bets, J. D. Molecular and cellular regulation of glucose transport (GLUT) proteins in cancer. J. Cell Physiol. 202, 654–662 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Mathupala, S. P., Ko, Y. H. & Pederson, P. L. Hexokinase II: cancer's double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene 25, 4777–4786 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Smith, T. A. Mammalian hexokinases and their abnormal expression in cancer. Br. J. Biomed. Sci. 57, 170–178 (2000).

    CAS  PubMed  Google Scholar 

  38. Caraco, C. et al. Cellular release of [18F]2-fluoro-2-deoxyglucose as a function of the glucose-6-phosphatates enzyme system. J. Biol. Chem. 275, 18489–18494 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Effert, P. et al. Expression of glucose transporter 1 (GLUT-1) in cell lines and clinical specimen from human prostate adenocarcinoma. Anticancer Res. 24, 3057–3063 (2004).

    CAS  PubMed  Google Scholar 

  40. Chandler, J. D. et al. Expression and localization of GLUT1 and GLUT12 in prostate carcinoma. Cancer 97, 2035–2042 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Stewardt, G. D. et al. Analysis of hypoxia-associated gene expression in prostate cancer: lysyl oxidase and glucose transporter 1 expression correlate with Gleason score. Oncol. Rep. 20, 1561–1567 (2008).

    Google Scholar 

  42. Hara, T., Bansal, A. & DeGrado, T. R. Effect of hypoxia on the uptake of [methyl-3H]choline, [1–14C]acetate and [18F]FDG in cultured prostate cancer cells. Nucl. Med. Biol. 33, 977–984 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Palayoor, S. T., Tofilon, P. J. & Coleman, C. N. Ibuprofen-mediated reduction of hypoxia-inducible factors HIF-1α and HIF-2α in prostate cancer cells. Clin. Cancer Res. 9, 3150–3157 (2003).

    CAS  PubMed  Google Scholar 

  44. Jadvar, H. et al. Glucose metabolism of human prostate cancer mouse xenografts. Mol. Imaging 4, 91–97 (2005).

    Article  PubMed  Google Scholar 

  45. Oyama, N. et al. MicroPET assessment of androgenic control of glucose and acetate uptake in the rat prostate and a prostate cancer tumor model. Nucl. Med. Biol. 29, 783–790 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Agus, D. B. et al. Positron emission tomography of a human prostate cancer xenograft: association of changes in deoxyglucose accumulation with other measures of outcome following androgen withdrawal. Cancer Res. 58, 3009–3014 (1998).

    CAS  PubMed  Google Scholar 

  47. Apolo, A. B., Pandit-Taskar, N. & Morris, M. J. Novel tracers and their development for the imaging of metastatic prostate cancer. J. Nucl. Med. 49, 2031–2041 (2008).

    Article  PubMed  Google Scholar 

  48. Takahashi, N. et al. The roles of PET and PET/CT in the diagnosis and management of prostate cancer. Oncology 72, 226–233 (2007).

    Article  PubMed  Google Scholar 

  49. Salminen, E. et al. Investigations with FDG-PET scanning in prostate cancer show limited value for clinical practice. Acta Oncol. 41, 425–429 (2002).

    Article  PubMed  Google Scholar 

  50. Pugachev, A. et al. Dependence of FDG uptake on tumor microenvironment. Int. J. Radiat. Oncol. Biol. Phys. 62, 545–553 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Etchebehere, E. C. et al. Qualitative and quantitative comparison between images obtained with filtered back projection and iterative reconstruction in prostate cancer lesions of 18F-FDG PET. Q. J. Nucl. Med. 46, 122–130 (2002).

    CAS  PubMed  Google Scholar 

  52. Turlakow, A. et al. local detection of prostate cancer by positron emission tomography with 2-fluorodeoxyglucose: comparison of filtered back projection and iterative reconstruction with segmented attenuation correction. Q. J. Nucl. Med. 45, 235–244 (2001).

    CAS  PubMed  Google Scholar 

  53. Vandenberghe, S. et al. Iterative reconstruction algorithms in nuclear medicine. Comput. Med. Imaging Graph. 25, 105–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Jadvar, H. et al. [F-8]-fluorodeoxyglucose PET–CT of the normal prostate gland. Ann. Nucl. Med. 22, 787–793 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Effert, P. J. et al. Metabolic imaging of untreated prostate cancer by positron emission tomography with 18fluorine-labeled deoxyglucose. J. Urol. 155, 994–998 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Hofer, C. et al. Fluorine-18-fluorodeoxyglucose positron emission tomography is useless for the detection of local recurrence after radical prostatectomy. Eur. Urol. 36, 31–35 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Patel, P. et al. Evaluation of metabolic activity of prostate gland with PET–CT. J. Nucl. Med. 43 (5 Suppl.), 119P (2002).

    Google Scholar 

  58. von Mallek, D. et al. Technical limits of PET/CT with 18FDG in prostate cancer [German]. Aktuelle Urol. 37, 218–221 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Liu, I. J. et al. Fluorodeoxyglucose positron emission tomography studies in diagnosis and staging of clinically organ-confined prostate cancer. Urology 57, 108–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Kao, P. F., Chou, Y. H. & Lai, C. W. Diffuse FDG uptake in acute prostatitis. Clin. Nucl. Med. 33, 308–310 (2008).

    Article  PubMed  Google Scholar 

  61. Oyama, N. et al. The increased accumulation of [18F]fluorodeoxyglucose in untreated prostate cancer. Jpn J. Clin. Oncol. 29, 623–629 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Kanamaru, H. et al. Evaluation of prostate cancer using FDG-PET [Japanese]. Hinyokika Kiyo 46, 851–853 (2000).

    CAS  PubMed  Google Scholar 

  63. Lucignani, G., Paganelli, G. & Bombardieri, E. The use of standardized uptake values for assessing FDG uptake with PET in oncology: a clinical perspective. Nucl. Med. Commun. 25, 651–656 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Shreve, P. D. et al. Metastatic prostate cancer: initial findings of PET with FDG. Radiology 199, 751–756 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Morris, N. J. et al. Fluorinated deoxyglucose positron emission tomography imaging in progressive metastatic prostate cancer. Urology 59, 913–918 (2002).

    Article  PubMed  Google Scholar 

  66. Yeh, S. D. et al. Detection of bony metastases of androgen-independent prostate cancer by PET-FDG. Nucl. Med. Biol. 23, 693–697 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Jadvar, H., Pinski, J. & Conti, P. FDG PET in suspected recurrent and metastatic prostate cancer. Oncol. Rep. 10, 1485–1488 (2003).

    PubMed  Google Scholar 

  68. Jadvar, H. et al. Concordance among FDG PET, CT and bone scan in men with metastatic prostate cancer. Presented at the 55th Annual Meeting of the Society of Nuclear Medicine, 2008 June 15–19, New Orleans, LA.

  69. Chang, C. H. et al. Detecting metastatic pelvic lymph nodes by (18)F-2-deoxyglucose positron emission tomography in patients with prostate-specific antigen relapse after treatment for localized prostate cancer. Urol. Int. 70, 311–315 (2003).

    Article  PubMed  Google Scholar 

  70. Schoder, H. et al. 2-[18F]fluoro-2-deoxyglucose positron emission tomography for detection of disease in patients with prostate-specific antigen relapse after radical prostatectomy. Clin. Cancer Res. 11, 4761–4769 (2005).

    Article  PubMed  Google Scholar 

  71. Sanz, G. et al. Positron emission tomography with 18fluorine-labelled deoxyglucose: utility in localized and advanced prostate cancer. BJU Int. 84, 1028–1031 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Sung, J. et al. Fluorodeoxyglucose positron emission tomography studies in the diagnosis and staging of clinically advanced prostate cancer. BJU Int. 92, 24–27 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Seltzer, M. A. et al. Comparison of helical computerized tomography, positron emission tomography and monoclonal antibody scans for evaluation of lymph node metastases in patients with prostate specific antigen relapse after treatment for localized prostate cancer. J. Urol. 162, 1322–1328 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Oyama, N. et al. FDG PET for evaluating the change of glucose metabolism in prostate cancer after androgen ablation. Nucl. Med. Commun. 22, 963–969 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Zhang, Y. et al. Longitudinally quantitative 2-deoxy-2-[18F]fluoro-D-glucose micro positron emission tomography imaging for efficacy of new anticancer drugs: a case study with bortezomib in prostate cancer murine model. Mol. Imaging Biol. 8, 300–308 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Haberkorn, U. et al. PET 2-fluoro-2-deoxyglucose uptake in rat prostate adenocarcinoma during chemotherapy with gemcitabine. J. Nucl. Med. 38, 1215–1221 (1997).

    CAS  PubMed  Google Scholar 

  77. Morris, M. J. et al. Fluorodeoxyglucose positron emission tomography as an outcome measure for castrate metastatic prostate cancer treated with antimicrotubule chemotherapy. Clin. Cancer Res. 11, 3210–3216 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Oyama, N. et al. Prognostic value of 2-deoxy-2-[F-18]fluoro-D-glucose positron emission tomography imaging for patients with prostate cancer. Mol. Imaging Biol. 4, 99–104 (2002).

    Article  PubMed  Google Scholar 

  79. Farsad, M. et al. Positron-emission tomography in imaging and staging prostate cancer. Cancer Biomark. 4, 277–284 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Dimitrakopoulou-Strauss, A. & Strauss, L. G. PET imaging of prostate cancer with 11C-acetate. J. Nucl. Med. 44, 556–558 (2003).

    PubMed  Google Scholar 

  81. Reske, S. N. et al. Imaging prostate cancer with 11C-choline PET/CT. J. Nucl. Med. 47, 1249–1254 (2006).

    CAS  PubMed  Google Scholar 

  82. Nunez, R. et al. Combined 18F-FDG and C-11 methionine PET scans in patients with newly progressive metastatic prostate cancer. J. Nucl. Med. 43, 46–55 (2002).

    PubMed  Google Scholar 

  83. Larson, S. M. et al. Tumor localization of 16β-18F-fluoro-5α-dihydrotestosterone versus 18F-FDG in patients with progressive, metastatic prostate cancer. J. Nucl. Med. 45, 366–373 (2004).

    CAS  PubMed  Google Scholar 

  84. Schuster, D. M. et al. Initial experience with radiotracer anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid with PET/CT in prostate carcinoma. J. Nucl. Med. 48, 56–63 (2007).

    CAS  PubMed  Google Scholar 

  85. Mease, R. C. et al. N-[N-[(S)-1, 3-Dicarboxypropyl]carbamoyl]-4-[18F]fluorobenzyl-l-cysteine, [18F]DCFBC: a new imaging probe for prostate cancer. Clin. Cancer Res. 14, 3036–3043 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Even-Sapir, E. et al. The detection of bone metastases in patients with high risk prostate cancer:99mTc-MDP planar bone scintigraphy, single- and multi-filed-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J. Nucl. Med. 47, 287–297 (2006).

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (National Cancer Institute Grant R01-CA111613).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Jadvar.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jadvar, H. Molecular imaging of prostate cancer with 18F-fluorodeoxyglucose PET. Nat Rev Urol 6, 317–323 (2009). https://doi.org/10.1038/nrurol.2009.81

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2009.81

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing