Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New insights into headache: an update on functional and structural imaging findings

Abstract

One of the most exciting developments in modern neuroscience has been the application of imaging techniques to provide new insights into the organization of the human brain in vivo. Functional imaging methods, such as PET and functional MRI, have become the preferred techniques for detection of the structure–function relationships within the brain that are characteristic of headache. This Review focuses on neuroimaging as a diagnostic tool for headache and highlights the advances made with functional and structural neuroimaging techniques in the study of primary headache syndromes such as migraine and trigeminal autonomic headaches. Several independent functional studies have reinforced the crucial role of the brainstem in acute and chronic migraine and of the hypothalamic area in trigeminal autonomic headaches. Structural abnormalities that have been identified in the visual network of motion-processing areas could account for, or result from, the cortical hyperexcitability observed in patients with migraine. Several morphometric studies suggest that gray matter volume and/or concentration is decreased in pain-transmitting areas in patients with migraine or tension-type headache. Given the rapid advances in functional neuroimaging, this technique will continue to be of paramount importance in patients with headache and might ultimately serve as the bridge between molecular and clinical domains in headache research.

Key Points

  • Routine use of neuroimaging is not warranted in adults or children with a primary headache syndrome without recent change in attack pattern, history of seizures, other focal neurological signs or symptoms

  • An exception to this rule should be made in the diagnosis of trigeminal autonomic headaches and headaches that are aggravated by exertion or a Valsalva-like maneuver

  • The dilatation of vessels that has been observed in trigeminal pain is not, as has previously been implied, inherent to a specific headache syndrome

  • Several independent studies have reinforced the crucial role of the brainstem in acute and chronic migraine

  • The activation of the hypothalamus is highly specific for trigeminal autonomic headaches, and imaging data from patients with cluster headache prompted successful deep brain stimulation of this area

  • Data from morphometric studies suggest that patients with migraine and those with tension-type headache have a decrease in gray matter volume in pain-transmitting areas, as a consequence of frequent pain

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The central network involved in the transmission of nociceptive input.
Figure 2: Summary of the functional and structural data from all studies cited in the text.

Similar content being viewed by others

References

  1. Kruit, M. C. et al. Migraine as a risk factor for subclinical brain lesions. JAMA 291, 427–434 (2004).

    CAS  PubMed  Google Scholar 

  2. Tietjen, G. E. Stroke and migraine linked by silent lesions. Lancet Neurol. 3, 267 (2004).

    PubMed  Google Scholar 

  3. Swartz, R. H. & Kern, R. Z. Migraine is associated with magnetic resonance imaging white matter abnormalities: a meta-analysis. Arch. Neurol. 61, 1366–1368 (2004).

    PubMed  Google Scholar 

  4. Rozen, T. D. Vanishing cerebellar infarcts in a migraine patient. Cephalalgia 27, 557–560 (2007).

    CAS  PubMed  Google Scholar 

  5. Agarwal, S., Magu, S. & Kamal, K. Reversible white matter abnormalities in a patient with migraine. Neurol. India 56, 182–185 (2008).

    PubMed  Google Scholar 

  6. Adami, A. et al. Right-to-left shunt does not increase white matter lesion load in migraine with aura patients. Neurology 71, 101–107 (2008).

    CAS  PubMed  Google Scholar 

  7. Dowson, A. et al. Migraine Intervention With STARFlex Technology (MIST) trial: a prospective, multicenter, double-blind, sham-controlled trial to evaluate the effectiveness of patent foramen ovale closure with STARFlex septal repair implant to resolve refractory migraine headache. Circulation 117, 1397–1404 (2008).

    PubMed  Google Scholar 

  8. Wilmshurst, P. T., Nightingale, S., Walsh, K. P. & Morrison, W. L. Effect on migraine of closure of cardiac right-to-left shunts to prevent recurrence of decompression illness or stroke or for haemodynamic reasons. Lancet 356, 1648–1651 (2000).

    CAS  PubMed  Google Scholar 

  9. Sandrini, G. et al. Neurophysiological tests and neuroimaging procedures in non-acute headache: guidelines and recommendations. Eur. J. Neurol. 11, 217–224 (2004).

    CAS  PubMed  Google Scholar 

  10. May, A. et al. Diagnostik und apparative Zusatzuntersuchungen bei Kopfschmerzen. (Thieme, Stuttgart, New York, 2008).

    Google Scholar 

  11. Detsky, M. E. et al. Does this patient with headache have a migraine or need neuroimaging? JAMA 296, 1274–1283 (2006).

    CAS  PubMed  Google Scholar 

  12. Favier, I. et al. Trigeminal autonomic cephalgias due to structural lesions: a review of 31 cases. Arch. Neurol. 64, 25–31 (2007).

    PubMed  Google Scholar 

  13. Edlow, J. A., Panagos, P. D., Godwin, S. A., Thomas, T. L. & Decker, W. W. Clinical policy: critical issues in the evaluation and management of adult patients presenting to the emergency department with acute headache. Ann. Emerg. Med. 52, 407–436 (2008).

    PubMed  Google Scholar 

  14. May, A. et al. Experimental cranial pain elicited by capsaicin: a PET-study. Pain 74, 61–66 (1998).

    CAS  PubMed  Google Scholar 

  15. Peyron, R., Laurent, B. & Garcia-Larrea, L. Functional imaging of brain responses to pain. A review and meta-analysis. Neurophysiol. Clin. 30, 263–288 (2000).

    CAS  PubMed  Google Scholar 

  16. Tracey, I. Neuroimaging of pain mechanisms. Curr. Opin. Support Palliat. Care 1, 109–116 (2007).

    PubMed  Google Scholar 

  17. Borsook, D., Burstein, R. & Becerra, L. Functional imaging of the human trigeminal system: opportunities for new insights into pain processing in health and disease. J. Neurobiol. 61, 107–125 (2004).

    PubMed  Google Scholar 

  18. Upadhyay, J., Knudsen, J., Anderson, J., Becerra, L. & Borsook, D. Noninvasive mapping of human trigeminal brainstem pathways. Magn. Reson. Med. 60, 1037–1046 (2008).

    PubMed  PubMed Central  Google Scholar 

  19. May, A., Büchel, C., Bahra, A., Goadsby, P. J. & Frackowiak, R. S. J. Intra-cranial vessels in trigeminal transmitted pain: a PET study. Neuroimage 9, 453–460 (1999).

    CAS  PubMed  Google Scholar 

  20. May, A., Bahra, A., Büchel, C., Frackowiak, R. S. & Goadsby, P. J. PET and MRA findings in cluster headache and MRA in experimental pain. Neurology 55, 1328–1335 (2000).

    CAS  PubMed  Google Scholar 

  21. May, A., Buchel, C., Turner, R. & Goadsby, P. J. Magnetic resonance angiography in facial and other pain: neurovascular mechanisms of trigeminal sensation. J. Cereb. Blood Flow Metab. 21, 1171–1176 (2001).

    CAS  PubMed  Google Scholar 

  22. Bednarczyk, E. M. et al. Brain blood flow in the nitroglycerin (GTN) model of migraine: measurement using positron emission tomography and transcranial Doppler. Cephalalgia 22, 749–757 (2002).

    CAS  PubMed  Google Scholar 

  23. Headache Classification Committee of the International Headache Society. The International Classification of Headache Disorders, 2nd edition. Cephalalgia 24 (Suppl. 1), 1–160 (2004).

  24. Weiller, C. et al. Brain stem activation in spontaneous human migraine attacks. Nat. Med. 1, 658–660 (1995).

    CAS  PubMed  Google Scholar 

  25. Bahra, A., Matharu, M. S., Buchel, C., Frackowiak, R. S. & Goadsby, P. J. Brainstem activation specific to migraine headache. Lancet 357, 1016–1017 (2001).

    CAS  PubMed  Google Scholar 

  26. Raskin, N. H., Hosobuchi, Y. & Lamb, S. Headache may arise from perturbation of brain. Headache 27, 416–420 (1987).

    CAS  PubMed  Google Scholar 

  27. Veloso, F., Kumar, K. & Toth, C. Headache secondary to deep brain implantation. Headache 38, 507–515 (1998).

    CAS  PubMed  Google Scholar 

  28. Petrovic, P., Petersson, K. M., Hansson, P. & Ingvar, M. Brainstem involvement in the initial response to pain. Neuroimage 22, 995–1005 (2004).

    PubMed  Google Scholar 

  29. Bingel, U. et al. Subcortical structures involved in pain processing: evidence from single-trial fMRI. Pain 99, 313–321 (2002).

    CAS  PubMed  Google Scholar 

  30. Rolls, E. T. et al. Representations of pleasant and painful touch in the human orbitofrontal and cingulate cortices. Cereb. Cortex 13, 308–317 (2003).

    CAS  PubMed  Google Scholar 

  31. Singer, T. et al. Empathy for pain involves the affective but not sensory components of pain. Science 303, 1157–1162 (2004).

    CAS  PubMed  Google Scholar 

  32. Afridi, S. et al. A positron emission tomographic study in spontaneous migraine. Arch. Neurol. 62, 1270–1275 (2005).

    PubMed  Google Scholar 

  33. Afridi, S. K. et al. A PET study exploring the laterality of brainstem activation in migraine using glyceryl trinitrate. Brain 128, 932–939 (2005).

    CAS  PubMed  Google Scholar 

  34. Matharu, M. S. et al. Central neuromodulation in chronic migraine patients with suboccipital stimulators: a PET study. Brain 127, 220–230 (2004).

    PubMed  Google Scholar 

  35. Denuelle, M., Fabre, N., Payoux, P., Chollet, F. & Geraud, G. Hypothalamic activation in spontaneous migraine attacks. Headache 47, 1418–1426 (2007).

    PubMed  Google Scholar 

  36. Rosen, S. D. et al. Silent ischemia as a central problem: regional brain activation compared in silent and painful myocardial ischemia. Ann. Intern. Med. 124, 939–949 (1996).

    CAS  PubMed  Google Scholar 

  37. Lothe, A. et al. Interictal brain 5-HT1A receptors binding in migraine without aura: a 18F-MPPF-PET study. Cephalalgia 28, 1282–1291 (2008).

    CAS  PubMed  Google Scholar 

  38. Srikiatkhachorn, A., Govitrapong, P. & Limthavon, C. Up-regulation of 5-HT2 serotonin receptor: a possible mechanism of transformed migraine. Headache 34, 8–11 (1994).

    CAS  PubMed  Google Scholar 

  39. Chabriat, H. et al. 5HT2 receptors in cerebral cortex of migraineurs studied using PET and 18F-fluorosetoperone. Cephalalgia 15, 104–108 (1995).

    CAS  PubMed  Google Scholar 

  40. Sakai, Y., Dobson, C., Diksic, M., Aube, M. & Hamel, E. Sumatriptan normalizes the migraine attack-related increase in brain serotonin synthesis. Neurology 70, 431–439 (2008).

    CAS  PubMed  Google Scholar 

  41. Sprenger, T. et al. Opioidergic changes in the pineal gland and hypothalamus in cluster headache: a ligand PET study. Neurology 66, 1108–1110 (2006).

    CAS  PubMed  Google Scholar 

  42. Borsook, D. et al. A 'BOLD' experiment in defining the utility of fMRI in drug development. Neuroimage 42, 461–466 (2008).

    PubMed  Google Scholar 

  43. Friberg, L., Olesen, J., Lassen, N. A., Olsen, T. S. & Karle, A. Cerebral oxygen extraction, oxygen consumption, and regional cerebral blood flow during the aura phase of migraine. Stroke 25, 974–979 (1994).

    CAS  PubMed  Google Scholar 

  44. Olesen, J. et al. Timing and topography of cerebral blood flow, aura, and headache during migraine attacks. Ann. Neurol. 28, 791–798 (1990).

    CAS  PubMed  Google Scholar 

  45. Olesen, J. & Friberg, L. Xenon-133 SPECT studies in migraine without aura in Migraine and Other Headaches: The Vascular Mechanisms (ed Olesen, J) 237–243 (Raven Press, London, 1991).

    Google Scholar 

  46. Olesen, J., Tfelt-Hansen, V. & Welch, K. M. A. The Headaches 2nd edn (Lippincott, Williams & Wilkins, Philadelphia, 1999).

    Google Scholar 

  47. Cutrer, F. M. et al. Perfusion-weighted imaging defects during spontaneous migrainous aura. Ann. Neurol. 43, 25–31 (1998).

    CAS  PubMed  Google Scholar 

  48. Hadjikhani, N. et al. Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc. Natl Acad. Sci. USA 98, 4687–4692 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Bolay, H. et al. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat. Med. 8, 136–142 (2002).

    CAS  PubMed  Google Scholar 

  50. Kelman, L. The aura: a tertiary care study of 952 migraine patients. Cephalalgia 24, 728–734 (2004).

    CAS  PubMed  Google Scholar 

  51. Granziera, C., DaSilva, A. F., Snyder, J., Tuch, D. S. & Hadjikhani, N. Anatomical alterations of the visual motion processing network in migraine with and without aura. PLoS Med. 3 e402 (2006).

    PubMed  PubMed Central  Google Scholar 

  52. Goadsby, P. J. The migrainous brain: what you see is not all you get? PLoS Med. 3 e404 (2006).

    PubMed  PubMed Central  Google Scholar 

  53. Fumal, A. et al. Orbitofrontal cortex involvement in chronic analgesic-overuse headache evolving from episodic migraine. Brain 129, 543–550 (2006).

    PubMed  Google Scholar 

  54. Sprenger, T. et al. Altered metabolism in frontal brain circuits in cluster headache. Cephalalgia 27, 1033–1042 (2007).

    CAS  PubMed  Google Scholar 

  55. May, A. Cluster headache: pathogenesis, diagnosis, and management. Lancet 366, 843–855 (2005).

    PubMed  Google Scholar 

  56. May, A. A review of diagnostic and functional imaging in headache. J. Headache Pain 7, 174–184 (2006).

    PubMed  PubMed Central  Google Scholar 

  57. May, A., Bahra, A., Büchel, C., Frackowiak, R. S. J. & Goadsby, P. J. Hypothalamic activation in cluster headache attacks. Lancet 352, 275–278 (1998).

    CAS  PubMed  Google Scholar 

  58. Leone, M., Franzini, A. & Bussone, G. Stereotactic stimulation of posterior hypothalamic gray matter in a patient with intractable cluster headache. N. Engl. J. Med. 345, 1428–1429 (2001).

    CAS  PubMed  Google Scholar 

  59. Leone, M. et al. Lessons from 8 years' experience of hypothalamic stimulation in cluster headache. Cephalalgia 28, 787–797 (2008).

    CAS  PubMed  Google Scholar 

  60. Schoenen, J. et al. Hypothalamic stimulation in chronic cluster headache: a pilot study of efficacy and mode of action. Brain 128, 940–947 (2005).

    CAS  PubMed  Google Scholar 

  61. May, A. et al. Hypothalamic deep brain stimulation in positron emission tomography. J. Neurosci. 26, 3589–3593 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. May, A. Hypothalamic deep-brain stimulation: target and potential mechanism for the treatment of cluster headache. Cephalalgia 28, 799–803 (2008).

    CAS  PubMed  Google Scholar 

  63. Wang, S. J., Lirng, J. F., Fuh, J. L. & Chen, J. J. Reduction in hypothalamic 1H-MRS metabolite ratios in patients with cluster headache. J. Neurol. Neurosurg. Psychiatry 77, 622–625 (2006).

    PubMed  PubMed Central  Google Scholar 

  64. Lodi, R. et al. Study of hypothalamic metabolism in cluster headache by proton MR spectroscopy. Neurology 66, 1264–1266 (2006).

    CAS  PubMed  Google Scholar 

  65. Goadsby, P. J. Pathophysiology of cluster headache: a trigeminal autonomic cephalgia. Lancet Neurol. 1, 251–257 (2002).

    PubMed  Google Scholar 

  66. Goadsby, P. J. & Lipton, R. B. A review of paroxysmal hemicranias, SUNCT syndrome and other short-lasting headaches with autonomic feature, including new cases. Brain 120, 193–209 (1997).

    PubMed  Google Scholar 

  67. May, A., Bahra, A., Buchel, C., Turner, R. & Goadsby, P. J. Functional magnetic resonance imaging in spontaneous attacks of SUNCT: short-lasting neuralgiform headache with conjunctival injection and tearing. Ann. Neurol. 46, 791–794 (1999).

    CAS  PubMed  Google Scholar 

  68. Sprenger, T. et al. SUNCT: bilateral hypothalamic activation during headache attacks and resolving of symptoms after trigeminal decompression. Pain 113, 422–426 (2005).

    PubMed  Google Scholar 

  69. Cohen, A. S., Matharu, M. S., Kalisch, R., Friston, K. & Goadsby, P. J. Functional MRI in SUNCT shows differential hypothalamic activation with increasing pain. Cephalalgia 24, 1098–1099 (2004).

    Google Scholar 

  70. Matharu, M. S., Cohen, A. S., Frackowiak, R. S. & Goadsby, P. J. Posterior hypothalamic activation in paroxysmal hemicrania. Ann. Neurol. 59, 535–545 (2006).

    PubMed  Google Scholar 

  71. Sprenger, T. et al. Hypothalamic activation in trigeminal autonomic cephalgia: functional imaging of an atypical case. Cephalalgia 24, 753–757 (2004).

    CAS  PubMed  Google Scholar 

  72. May, A., Bahra, A., Büchel, C., Frackowiak, R. & Goadsby, P. Cerebral activation in cluster headache in and outside the bout: a PET study. Eur. J. Neurol. 5, 7–8 (1998).

    Google Scholar 

  73. Leone, M. et al. Deep brain stimulation to relieve drug-resistant SUNCT. Ann. Neurol. 57, 924–927 (2005).

    PubMed  Google Scholar 

  74. Lyons, M. K., Dodick, D. W. & Evidente, V. G. Responsiveness of short-lasting unilateral neuralgiform headache with conjunctival injection and tearing to hypothalamic deep brain stimulation. J. Neurosurg. 110, 279–281 (2009).

    PubMed  Google Scholar 

  75. Matharu, M. S. et al. Posterior hypothalamic and brainstem activation in hemicrania continua. Headache 44, 747–761 (2004).

    PubMed  Google Scholar 

  76. May, A. & Gaser, C. Magnetic resonance-based morphometry: a window into structural plasticity of the brain. Curr. Opin. Neurol. 19, 407–411 (2006).

    PubMed  Google Scholar 

  77. Draganski, B. & May, A. Training-induced structural changes in the adult human brain. Behav. Brain Res. 192, 137–142 (2008).

    CAS  PubMed  Google Scholar 

  78. May, A. et al. Correlation between structural and functional changes in brain in an idiopathic headache syndrome. Nat. Med. 5, 836–838 (1999).

    CAS  PubMed  Google Scholar 

  79. Matharu, M. S., Good, C. D., May, A., Bahra, A. & Goadsby, P. J. No change in the structure of the brain in migraine: a voxel-based morphometric study. Eur. J. Neurol. 10, 53–57 (2003).

    CAS  PubMed  Google Scholar 

  80. Rocca, M. A. et al. Brain gray matter changes in migraine patients with T2-visible lesions: a 3-T MRI study. Stroke 37, 1765–1770 (2006).

    PubMed  Google Scholar 

  81. Valfre, W., Rainero, I., Bergui, M. & Pinessi, L. Voxel-based morphometry reveals gray matter abnormalities in migraine. Headache 48, 109–117 (2008).

    PubMed  Google Scholar 

  82. Schmidt-Wilcke, T., Ganssbauer, S., Neuner, T., Bogdahn, U. & May, A. Subtle grey matter changes between migraine patients and healthy controls. Cephalalgia 28, 1–4 (2008).

    CAS  PubMed  Google Scholar 

  83. Schmitz, N. et al. Attack frequency and disease duration as indicators for brain damage in migraine. Headache 48, 1044–1055 (2008).

    PubMed  Google Scholar 

  84. Kim, J. H. et al. Regional grey matter changes in patients with migraine: a voxel-based morphometry study. Cephalalgia 28, 598–604 (2008).

    CAS  PubMed  Google Scholar 

  85. Schmidt-Wilcke, T. et al. Gray matter decrease in patients with chronic tension type headache. Neurology 65, 1483–1486 (2005).

    CAS  PubMed  Google Scholar 

  86. May, A. Chronic pain may change the structure of the brain. Pain 137, 7–15 (2008).

    PubMed  Google Scholar 

  87. Kuchinad, A. et al. Accelerated brain gray matter loss in fibromyalgia patients: premature aging of the brain? J. Neurosci. 27, 4004–4007 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Davis, K. D. et al. Cortical thinning in IBS: implications for homeostatic, attention, and pain processing. Neurology 70, 153–154 (2008).

    CAS  PubMed  Google Scholar 

  89. Draganski, B. et al. Decrease of thalamic gray matter following limb amputation. Neuroimage 31, 951–957 (2006).

    CAS  PubMed  Google Scholar 

  90. Apkarian, A. V. et al. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J. Neurosci. 24, 10410–10415 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Schmidt-Wilcke, T. et al. Affective components and intensity of pain correlate with structural differences in gray matter in chronic back pain patients. Pain 125, 89–97 (2006).

    CAS  PubMed  Google Scholar 

  92. Wrigley, P. J. et al. Anatomical changes in human motor cortex and motor pathways following complete thoracic spinal cord injury. Cereb. Cortex 19, 224–232 (2009).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author acknowledges the help of Kristin Ihle in performing the meta-analysis of functional and structural imaging data in headache and for her help in preparing Figure 2. A May is supported by a grant from the Deutsche Forschungsgemeinschaft (MA 1862/2). This study is supported by a grant from the Federal Ministry of Education and Research (BMBF project no. 371 57 01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne May.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

May, A. New insights into headache: an update on functional and structural imaging findings. Nat Rev Neurol 5, 199–209 (2009). https://doi.org/10.1038/nrneurol.2009.28

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2009.28

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing