Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Brain foods: the effects of nutrients on brain function

Abstract

It has long been suspected that the relative abundance of specific nutrients can affect cognitive processes and emotions. Newly described influences of dietary factors on neuronal function and synaptic plasticity have revealed some of the vital mechanisms that are responsible for the action of diet on brain health and mental function. Several gut hormones that can enter the brain, or that are produced in the brain itself, influence cognitive ability. In addition, well-established regulators of synaptic plasticity, such as brain-derived neurotrophic factor, can function as metabolic modulators, responding to peripheral signals such as food intake. Understanding the molecular basis of the effects of food on cognition will help us to determine how best to manipulate diet in order to increase the resistance of neurons to insults and promote mental fitness.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of feeding on cognition.
Figure 2: Energy homeostasis and cognition.
Figure 3: Dietary omega-3 fatty acids can affect synaptic plasticity and cognition.

References

  1. McCann, J. C. & Ames, B. N. Is docosahexaenoic acid, an n-3 long-chain polyunsaturated fatty acid, required for development of normal brain function? An overview of evidence from cognitive and behavioral tests in humans and animals. Am. J. Clin. Nutr. 82, 281–295 (2005).

    CAS  PubMed  Google Scholar 

  2. Wu, A., Ying, Z. & Gomez-Pinilla, F. Omega-3 fatty acids supplementation restores mechanisms that maintain brain homeostasis in traumatic brain injury. J. Neurotrauma 24, 1587–1595 (2007).

    PubMed  Google Scholar 

  3. Greenwood, C. E. & Winocur, G. High-fat diets, insulin resistance and declining cognitive function. Neurobiol. Aging 26 (Suppl. 1), 42–45 (2005).

    PubMed  Google Scholar 

  4. Molteni, R., Barnard, J. R., Ying, Z., Roberts, C. K. & Gomez-Pinilla, F. A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience 112, 803–814 (2002).

    CAS  PubMed  Google Scholar 

  5. Pessoa, L. On the relationship between emotion and cognition. Nature Rev. Neurosci. 9, 148–158 (2008).

    CAS  Google Scholar 

  6. Rush, A. J. et al. Vagus nerve stimulation for treatment-resistant depression: a randomized, controlled acute phase trial. Biol. Psychiatry 58, 347–354 (2005).

    PubMed  Google Scholar 

  7. Nahas, Z. et al. Two-year outcome of vagus nerve stimulation (VNS) for treatment of major depressive episodes. J. Clin. Psychiatry 66, 1097–1104 (2005).

    PubMed  Google Scholar 

  8. George, M. S. et al. Brain stimulation for the treatment of psychiatric disorders. Curr. Opin. Psychiatry 20, 250–254 (2007).

    PubMed  Google Scholar 

  9. Follesa, P. et al. Vagus nerve stimulation increases norepinephrine concentration and the gene expression of BDNF and bFGF in the rat brain. Brain Res. 1179, 28–34 (2007).

    CAS  PubMed  Google Scholar 

  10. Nibuya, M., Morinobu, S. & Duman, R. S. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J. Neurosci. 15, 7539–7547 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Helke, C. J. et al. Axonal transport of neurotrophins by visceral afferent and efferent neurons of the vagus nerve of the rat. J. Comp. Neurol. 393, 102–117 (1998).

    CAS  PubMed  Google Scholar 

  12. Clark, K. B., Naritoku, D. K., Smith, D. C., Browning, R. A. & Jensen, R. A. Enhanced recognition memory following vagus nerve stimulation in human subjects. Nature Neurosci. 2, 94–98 (1999).

    CAS  PubMed  Google Scholar 

  13. Harvey, J. Leptin regulation of neuronal excitability and cognitive function. Curr. Opin. Pharmacol. 7, 643–647 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Komori, T., Morikawa, Y., Nanjo, K. & Senba, E. Induction of brain-derived neurotrophic factor by leptin in the ventromedial hypothalamus. Neuroscience 139, 1107–1115 (2006).

    CAS  PubMed  Google Scholar 

  15. Shanley, L. J., Irving, A. J. & Harvey, J. Leptin enhances NMDA receptor function and modulates hippocampal synaptic plasticity. J. Neurosci. 21, RC186 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Li, X. L. et al. Impairment of long-term potentiation and spatial memory in leptin receptor-deficient rodents. Neuroscience 113, 607–615 (2002).

    CAS  PubMed  Google Scholar 

  17. Wayner, M. J., Armstrong, D. L., Phelix, C. F. & Oomura, Y. Orexin-A (Hypocretin-1) and leptin enhance LTP in the dentate gyrus of rats in vivo. Peptides 25, 991–996 (2004).

    CAS  PubMed  Google Scholar 

  18. O'Malley, D. et al. Leptin promotes rapid dynamic changes in hippocampal dendritic morphology. Mol. Cell. Neurosci. 35, 559–572 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. van der Lely, A. J., Tschop, M., Heiman, M. L. & Ghigo, E. Biological, physiological, pathophysiological, and pharmacological aspects of ghrelin. Endocr. Rev. 25, 426–457 (2004).

    CAS  PubMed  Google Scholar 

  20. Asakawa, A. et al. Antagonism of ghrelin receptor reduces food intake and body weight gain in mice. Gut 52, 947–952 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Cummings, D. E. et al. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 50, 1714–1719 (2001).

    CAS  PubMed  Google Scholar 

  22. Shuto, Y. et al. Generation of polyclonal antiserum against the growth hormone secretagogue receptor (GHS-R): evidence that the GHS-R exists in the hypothalamus, pituitary and stomach of rats. Life Sci. 68, 991–996 (2001).

    CAS  PubMed  Google Scholar 

  23. Guan, X. M. et al. Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Brain Res. Mol. Brain Res. 48, 23–29 (1997).

    CAS  PubMed  Google Scholar 

  24. Tschop, M., Smiley, D. L. & Heiman, M. L. Ghrelin induces adiposity in rodents. Nature 407, 908–913 (2000).

    CAS  PubMed  Google Scholar 

  25. Wren, A. M. et al. The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology 141, 4325–4328 (2000).

    CAS  PubMed  Google Scholar 

  26. Druce, M. R. et al. Subcutaneous administration of ghrelin stimulates energy intake in healthy lean human volunteers. Int. J. Obes. (Lond.) 30, 293–296 (2006).

    CAS  Google Scholar 

  27. Wren, A. M. et al. Ghrelin enhances appetite and increases food intake in humans. J. Clin. Endocrinol. Metab. 86, 5992 (2001).

    CAS  PubMed  Google Scholar 

  28. Pinto, S. et al. Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science 304, 110–115 (2004).

    CAS  PubMed  Google Scholar 

  29. Diano, S. et al. Ghrelin controls hippocampal spine synapse density and memory performance. Nature Neurosci. 9, 381–388 (2006).

    CAS  PubMed  Google Scholar 

  30. During, M. J. et al. Glucagon-like peptide-1 receptor is involved in learning and neuroprotection. Nature Med. 9, 1173–1179 (2003).

    CAS  PubMed  Google Scholar 

  31. McNay, E. C. Insulin and ghrelin: peripheral hormones modulating memory and hippocampal function. Curr. Opin. Pharmacol. 7, 628–632 (2007).

    CAS  PubMed  Google Scholar 

  32. Vaynman, S., Ying, Z., Wu, A. & Gomez-Pinilla, F. Coupling energy metabolism with a mechanism to support brain-derived neurotrophic factor-mediated synaptic plasticity. Neuroscience 139, 1221–1234 (2006).

    CAS  PubMed  Google Scholar 

  33. Nawa, H., Carnahan, J. & Gall, C. BDNF protein measured by a novel enzyme immunoassay in normal brain and after seizure: partial disagreement with mRNA levels. Eur. J. Neurosci. 7, 1527–1535 (1995).

    CAS  PubMed  Google Scholar 

  34. Kesslak, J. P., So, V., Choi, J., Cotman, C. W. & Gomez-Pinilla, F. Learning upregulates brain-derived neurotrophic factor messenger ribonucleic acid: a mechanism to facilitate encoding and circuit maintenance? Behav. Neurosci. 112, 1012–1019 (1998).

    CAS  PubMed  Google Scholar 

  35. Hall, J., Thomas, K. L. & Everitt, B. J. Rapid and selective induction of BDNF expression in the hippocampus during contextual learning. Nature Neurosci. 3, 533–535 (2000).

    CAS  PubMed  Google Scholar 

  36. Linnarsson, S., Bjorklund, A. & Ernfors, P. Learning deficit in BDNF mutant mice. Eur. J. Neurosci. 9, 2581–2587 (1997).

    CAS  PubMed  Google Scholar 

  37. Ma, Y. L., Wang, H. L., Wu, H. C., Wei, C. L. & Lee, E. H. Brain-derived neurotrophic factor antisense oligonucleotide impairs memory retention and inhibits long-term potentiation in rats. Neuroscience 82, 957–967 (1998).

    CAS  PubMed  Google Scholar 

  38. Chen, Z. Y. et al. Variant brain-derived neurotrophic factor (BDNF) (Met66) alters the intracellular trafficking and activity-dependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons. J. Neurosci. 24, 4401–4411 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Egan, M. F. et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112, 257–269 (2003).

    CAS  PubMed  Google Scholar 

  40. Kernie, S. G., Liebl, D. J. & Parada, L. F. BDNF regulates eating behavior and locomotor activity in mice. E mbo J. 19, 1290–1300 (2000).

    CAS  Google Scholar 

  41. Lyons, W. E. et al. Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities. Proc. Natl Acad. Sci. USA 96, 15239–15244 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Pelleymounter, M. A., Cullen, M. J. & Wellman, C. L. Characteristics of BDNF-induced weight loss. Exp. Neurol. 131, 229–238 (1995).

    CAS  PubMed  Google Scholar 

  43. Nakagawa, T. et al. Brain-derived neurotrophic factor (BDNF) regulates glucose and energy metabolism in diabetic mice. Diabetes Metab. Res. Rev. 18, 185–191 (2002).

    CAS  PubMed  Google Scholar 

  44. Tonra, J. R. et al. Brain-derived neurotrophic factor improves blood glucose control and alleviates fasting hyperglycemia in C57BLKS-Leprdb/leprdb mice. Diabetes 48, 588–594 (1999).

    CAS  PubMed  Google Scholar 

  45. Tsuchida, A. et al. Brain-derived neurotrophic factor ameliorates lipid metabolism in diabetic mice. Diabetes Obes. Metab. 4, 262–269 (2002).

    CAS  PubMed  Google Scholar 

  46. Xu, B. et al. Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nature Neurosci. 6, 736–742 (2003).

    CAS  PubMed  Google Scholar 

  47. Yeo, G. S. et al. A de novo mutation affecting human TrkB associated with severe obesity and developmental delay. Nature Neurosci. 7, 1187–1189 (2004).

    CAS  PubMed  Google Scholar 

  48. Ding, Q., Vaynman, S., Akhavan, M., Ying, Z. & Gomez-Pinilla, F. Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience 140, 823–833 (2006).

    CAS  PubMed  Google Scholar 

  49. Islam, A. et al. Changes in IGF-1 receptors in the hippocampus of adult rats after long-term adrenalectomy: receptor autoradiography and in situ hybridization histochemistry. Brain Res. 797, 342–346 (1998).

    CAS  PubMed  Google Scholar 

  50. Foster, L. A., Ames, N. K. & Emery, R. S. Food intake and serum insulin responses to intraventricular infusions of insulin and IGF-I. Physiol. Behav. 50, 745–749 (1991).

    CAS  PubMed  Google Scholar 

  51. Anlar, B., Sullivan, K. A. & Feldman, E. L. Insulin-like growth factor-I and central nervous system development. Horm. Metab. Res. 31, 120–125 (1999).

    CAS  PubMed  Google Scholar 

  52. Torres-Aleman, I. Insulin-like growth factors as mediators of functional plasticity in the adult brain. Horm. Metab. Res. 31, 114–119 (1999).

    CAS  PubMed  Google Scholar 

  53. Saatman, K. E. et al. Insulin-like growth factor-1 (IGF-1) improves both neurological motor and cognitive outcome following experimental brain injury. Exp. Neurol. 147, 418–427 (1997).

    CAS  PubMed  Google Scholar 

  54. Carro, E., Trejo, J. L., Busiguina, S. & Torres-Aleman, I. Circulating insulin-like growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. J. Neurosci. 21, 5678–5684 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Lupien, S. B., Bluhm, E. J. & Ishii, D. N. Systemic insulin-like growth factor-I administration prevents cognitive impairment in diabetic rats, and brain IGF regulates learning/memory in normal adult rats. J. Neurosci. Res. 74, 512–523 (2003).

    CAS  PubMed  Google Scholar 

  56. Markowska, A. L., Mooney, M. & Sonntag, W. E. Insulin-like growth factor-1 ameliorates age-related behavioral deficits. Neuroscience 87, 559–569 (1998).

    CAS  PubMed  Google Scholar 

  57. Johnson-Farley, N. N., Patel, K., Kim, D. & Cowen, D. S. Interaction of FGF-2 with IGF-1 and BDNF in stimulating Akt, ERK, and neuronal survival in hippocampal cultures. Brain Res. 1154, 40–49 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Akbar, M., Calderon, F., Wen, Z. & Kim, H. Y. Docosahexaenoic acid: a positive modulator of Akt signaling in neuronal survival. Proc. Natl Acad. Sci. USA 102, 10858–10863 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Sacks, F. M. Metabolic syndrome: epidemiology and consequences. J. Clin. Psychiatry 65 (Suppl. 18), 3–12 (2004).

    PubMed  Google Scholar 

  60. Lilliker, S. L. Prevalence of diabetes in a manic-depressive population. Compr. Psychiatry 21, 270–275 (1980).

    CAS  PubMed  Google Scholar 

  61. Mukherjee, S., Decina, P., Bocola, V., Saraceni, F. & Scapicchio, P. L. Diabetes mellitus in schizophrenic patients. Compr. Psychiatry 37, 68–73 (1996).

    CAS  PubMed  Google Scholar 

  62. Dixon, L. et al. Prevalence and correlates of diabetes in national schizophrenia samples. Schizophr. Bull. 26, 903–912 (2000).

    CAS  PubMed  Google Scholar 

  63. Angelucci, F., Brene, S. & Mathe, A. A. BDNF in schizophrenia, depression and corresponding animal models. Mol. Psychiatry 10, 345–352 (2005).

    CAS  PubMed  Google Scholar 

  64. Nestler, E. J. et al. Neurobiology of depression. Neuron 34, 13–25 (2002).

    CAS  PubMed  Google Scholar 

  65. Martinowich, K., Manji, H. & Lu, B. New insights into BDNF function in depression and anxiety. Nature Neurosci. 10, 1089–1093 (2007).

    CAS  PubMed  Google Scholar 

  66. Duman, R. S. Synaptic plasticity and mood disorders. Mol. Psychiatry 7 (Suppl. 1), S29–S34 (2002).

    CAS  PubMed  Google Scholar 

  67. Krabbe, K. S. et al. Brain-derived neurotrophic factor (BDNF) and type 2 diabetes. Diabetologia 50, 431–438 (2007).

    CAS  PubMed  Google Scholar 

  68. Durany, N. et al. Brain-derived neurotrophic factor and neurotrophin 3 in schizophrenic psychoses. Schizophr. Res. 52, 79–86 (2001).

    CAS  PubMed  Google Scholar 

  69. Toyooka, K. et al. Decreased levels of brain-derived neurotrophic factor in serum of chronic schizophrenic patients. Psychiatry Res. 110, 249–257 (2002).

    CAS  PubMed  Google Scholar 

  70. Zorner, B. et al. Forebrain-specific trkB-receptor knockout mice: behaviorally more hyperactive than “depressive”. Biol. Psychiatry 54, 972–982 (2003).

    CAS  PubMed  Google Scholar 

  71. Karege, F. et al. Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res. 109, 143–148 (2002).

    CAS  PubMed  Google Scholar 

  72. Chen, B., Dowlatshahi, D., MacQueen, G. M., Wang, J. F. & Young, L. T. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol. Psychiatry 50, 260–265 (2001).

    CAS  PubMed  Google Scholar 

  73. Tsankova, N. M. et al. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nature Neurosci. 9, 519–525 (2006).

    CAS  PubMed  Google Scholar 

  74. Bourre, J. M. et al. The effects of dietary α-linolenic acid on the composition of nerve membranes, enzymatic activity, amplitude of electrophysiological parameters, resistance to poisons and performance of learning tasks in rats. J. Nutr. 119, 1880–1892 (1989).

    CAS  PubMed  Google Scholar 

  75. Moriguchi, T., Greiner, R. S. & Salem, N. Jr. Behavioral deficits associated with dietary induction of decreased brain docosahexaenoic acid concentration. J. Neurochem. 75, 2563–2573 (2000).

    CAS  PubMed  Google Scholar 

  76. Adams, P. B., Lawson, S., Sanigorski, A. & Sinclair, A. J. Arachidonic acid to eicosapentaenoic acid ratio in blood correlates positively with clinical symptoms of depression. Lipids 31 (Suppl.), 157–161 (1996).

    Google Scholar 

  77. Peet, M., Laugharne, J. D., Mellor, J. & Ramchand, C. N. Essential fatty acid deficiency in erythrocyte membranes from chronic schizophrenic patients, and the clinical effects of dietary supplementation. Prostaglandins Leukot. Essent. Fatty Acids 55, 71–75 (1996).

    CAS  PubMed  Google Scholar 

  78. Hibbeln, J. R. Fish consumption and major depression. Lancet 351, 1213 (1998).

    CAS  PubMed  Google Scholar 

  79. Horrobin, D. F. Schizophrenia: the illness that made us human. Med. Hypotheses 50, 269–288 (1998).

    CAS  PubMed  Google Scholar 

  80. Freeman, M. P. et al. Omega-3 fatty acids: evidence basis for treatment and future research in psychiatry. J. Clin. Psychiatry 67, 1954–1967 (2006).

    CAS  PubMed  Google Scholar 

  81. Wu, A., Ying, Z. & Gómez-Pinilla, F. Dietary Omega-3 fatty acids normalize BDNF levels, reduce oxidative damage, and counteract learning disability after traumatic brain injury in rats. J. Neurotrauma 21, 1457–1467 (2004).

    PubMed  Google Scholar 

  82. Pifferi, F. et al. (n-3) polyunsaturated fatty acid deficiency reduces the expression of both isoforms of the brain glucose transporter GLUT1 in rats. J. Nutr. 135, 2241–2246 (2005).

    CAS  PubMed  Google Scholar 

  83. Flachs, P. et al. Polyunsaturated fatty acids of marine origin upregulate mitochondrial biogenesis and induce β-oxidation in white fat. Diabetologia 48, 2365–2375 (2005).

    CAS  PubMed  Google Scholar 

  84. Portwood, M. M. The role of dietary fatty acids in children's behaviour and learning. Nutr. Health 18, 233–247 (2006).

    CAS  PubMed  Google Scholar 

  85. Richardson, A. J. & Montgomery, P. The Oxford-Durham study: a randomized, controlled trial of dietary supplementation with fatty acids in children with developmental coordination disorder. Pediatrics 115, 1360–1366 (2005).

    PubMed  Google Scholar 

  86. Osendarp, S. J. et al. Effect of a 12-mo micronutrient intervention on learning and memory in well-nourished and marginally nourished school-aged children: 2 parallel, randomized, placebo-controlled studies in Australia and Indonesia. Am. J. Clin. Nutr. 86, 1082–1093 (2007).

    CAS  PubMed  Google Scholar 

  87. Innis, S. M. Dietary (n-3) fatty acids and brain development. J. Nutr. 137, 855–859 (2007).

    CAS  PubMed  Google Scholar 

  88. Wu, A., Molteni, R., Ying, Z. & Gomez-Pinilla, F. A saturated-fat diet aggravates the outcome of traumatic brain injury on hippocampal plasticity and cognitive function by reducing brain-derived neurotrophic factor. Neuroscience 119, 365–375 (2003).

    CAS  PubMed  Google Scholar 

  89. Wu, A., Ying, Z. & Gómez-Pinilla, F. Dietary curcumin counteracts the outcome of traumatic brain injury on oxidative stress, synaptic plasticity, and cognition. Exp. Neurol. 197, 309–317 (2006).

    CAS  PubMed  Google Scholar 

  90. Wu, A., Ying, Z. & Gómez-Pinilla, F. Oxidative stress modulates Sir2α in rat hippocampus and cerebral cortex. Eur. J. Neurosci. 23, 2573–2580 (2006).

    PubMed  Google Scholar 

  91. Pu, F. et al. Neuroprotective effects of quercetin and rutin on spatial memory impairment in an 8-arm radial maze task and neuronal death induced by repeated cerebral ischemia in rats. J. Pharmacol. Sci. 104, 329–334 (2007).

    CAS  PubMed  Google Scholar 

  92. van Praag, H. et al. Plant-derived flavanol (−)epicatechin enhances angiogenesis and retention of spatial memory in mice. J. Neurosci. 27, 5869–5878 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Mischoulon, D. & Raab, M. F. The role of folate in depression and dementia. J. Clin. Psychiatry 68 (Suppl. 10), 28–33 (2007).

    CAS  PubMed  Google Scholar 

  94. Herbert, V. Experimental nutritional folate deficiency in man. Trans. Assoc. Am. Physicians 75, 307–320 (1962).

    CAS  PubMed  Google Scholar 

  95. Corrada, M., Kawas, C., Hallfrisch, J., Muller, D. & Brookmeyer, R. Reduced risk of Alzheimer's disease with high folate intake: The Baltimore Longitudinal Study of Aging. Alzheimers Dement. 1, A4 (2005).

    Google Scholar 

  96. Fioravanti, M. et al. Low folate levels in the cognitive decline of elderly patients and efficacy of folate as a treatment for improving memory deficits. Arch. Gerontol. Geriatr. 26, 1–13 (1997).

    CAS  Google Scholar 

  97. Nilsson, K., Gustafson, L. & Hultberg, B. Improvement of cognitive functions after cobalamin/folate supplementation in elderly patients with dementia and elevated plasma homocysteine. Int. J. Geriatr. Psychiatry 16, 609–614 (2001).

    CAS  PubMed  Google Scholar 

  98. Ramos, M. I. et al. Low folate status is associated with impaired cognitive function and dementia in the Sacramento Area Latino Study on Aging. Am. J. Clin. Nutr. 82, 1346–1352 (2005).

    CAS  PubMed  Google Scholar 

  99. Fava, M. et al. Folate, vitamin B12, and homocysteine in major depressive disorder. Am. J. Psychiatry 154, 426–428 (1997).

    CAS  PubMed  Google Scholar 

  100. Durga, J. et al. Effect of 3-year folic acid supplementation on cognitive function in older adults in the FACIT trial: a randomised, double blind, controlled trial. Lancet 369, 208–216 (2007).

    CAS  PubMed  Google Scholar 

  101. [No authors listed]. Folic acid: a supplementary question. Lancet Neurol. 6, 199 (2007).

  102. Wu, A., Ying, Z. & Gomez-Pinilla, F. The interplay between oxidative stress and brain-derived neurotrophic factor modulates the outcome of a saturated fat diet on synaptic plasticity and cognition. Eur. J. Neurosci. 19, 1699–1707 (2004).

    PubMed  Google Scholar 

  103. Mattson, M. P. Energy intake, meal frequency, and health: a neurobiological perspective. Annu. Rev. Nutr. 25, 237–260 (2005).

    CAS  PubMed  Google Scholar 

  104. Mattson, M. P. Dietary factors, hormesis and health. Ageing Res. Rev. 7, 43–48 (2007).

    PubMed  PubMed Central  Google Scholar 

  105. Duan, W. et al. Dietary restriction normalizes glucose metabolism and BDNF levels, slows disease progression, and increases survival in huntingtin mutant mice. Proc. Natl Acad. Sci. USA 100, 2911–2916 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Lee, J., Seroogy, K. B. & Mattson, M. P. Dietary restriction enhances neurotrophin expression and neurogenesis in the hippocampus of adult mice. J. Neurochem. 80, 539–547 (2002).

    CAS  PubMed  Google Scholar 

  107. Ingram, D. K., Weindruch, R., Spangler, E. L., Freeman, J. R. & Walford, R. L. Dietary restriction benefits learning and motor performance of aged mice. J. Gerontol. 42, 78–81 (1987).

    CAS  PubMed  Google Scholar 

  108. Halagappa, V. K. et al. Intermittent fasting and caloric restriction ameliorate age-related behavioral deficits in the triple-transgenic mouse model of Alzheimer's disease. Neurobiol. Dis. 26, 212–220 (2007).

    CAS  PubMed  Google Scholar 

  109. Booth, F. W., Chakravarthy, M. V., Gordon, S. E. & Spangenburg, E. E. Waging war on physical inactivity: using modern molecular ammunition against an ancient enemy. J. Appl. Physiol. 93, 3–30 (2002).

    PubMed  Google Scholar 

  110. Carlson, O. et al. Impact of reduced meal frequency without caloric restriction on glucose regulation in healthy, normal-weight middle-aged men and women. Metabolism 56, 1729–1734 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Johnson, J. B. et al. Alternate day calorie restriction improves clinical findings and reduces markers of oxidative stress and inflammation in overweight adults with moderate asthma. Free Radic. Biol. Med. 42, 665–674 (2007).

    CAS  PubMed  Google Scholar 

  112. Joseph, J. A., Shukitt-Hale, B. & Lau, F. C. Fruit polyphenols and their effects on neuronal signaling and behavior in senescence. Ann. NY Acad. Sci. 1100, 470–485 (2007).

    CAS  PubMed  Google Scholar 

  113. Galli, R. L., Bielinski, D. F., Szprengiel, A., Shukitt-Hale, B. & Joseph, J. A. Blueberry supplemented diet reverses age-related decline in hippocampal HSP70 neuroprotection. Neurobiol. Aging 27, 344–350 (2006).

    CAS  PubMed  Google Scholar 

  114. Casadesus, G. et al. Modulation of hippocampal plasticity and cognitive behavior by short-term blueberry supplementation in aged rats. Nutr. Neurosci. 7, 309–316 (2004).

    CAS  PubMed  Google Scholar 

  115. Duffy, K. B. et al. A blueberry-enriched diet provides cellular protection against oxidative stress and reduces a kainate-induced learning impairment in rats. Neurobiol. Aging 22 May 2007 [epub ahead of print].

  116. Liu, J. The effects and mechanisms of mitochondrial nutrient α-lipoic acid on improving age-associated mitochondrial and cognitive dysfunction: an overview. Neurochem. Res. 33, 194–203 (2008).

    CAS  PubMed  Google Scholar 

  117. Quinn, J. F. et al. Chronic dietary α-lipoic acid reduces deficits in hippocampal memory of aged Tg2576 mice. Neurobiol. Aging 28, 213–225 (2007).

    CAS  PubMed  Google Scholar 

  118. Holmquist, L. et al. Lipoic acid as a novel treatment for Alzheimer's disease and related dementias. Pharmacol. Ther. 113, 154–164 (2007).

    CAS  PubMed  Google Scholar 

  119. Perkins, A. J. et al. Association of antioxidants with memory in a multiethnic elderly sample using the Third National Health and Nutrition Examination Survey. Am. J. Epidemiol. 150, 37–44 (1999).

    CAS  PubMed  Google Scholar 

  120. Navarro, A. et al. Vitamin E at high doses improves survival, neurological performance, and brain mitochondrial function in aging male mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R1392–R1399 (2005).

    CAS  PubMed  Google Scholar 

  121. Ammon, H. P. & Wahl, M. A. Pharmacology of Curcuma longa. Planta Med. 57, 1–7 (1991).

    CAS  PubMed  Google Scholar 

  122. Kelloff, G. J. et al. Progress in cancer chemoprevention: development of diet-derived chemopreventive agents. J. Nutr. 130, 467S–471S (2000).

    CAS  PubMed  Google Scholar 

  123. Frautschy, S. A. et al. Phenolic anti-inflammatory antioxidant reversal of Aβ-induced cognitive deficits and neuropathology. Neurobiol. Aging 22, 993–1005 (2001).

    CAS  PubMed  Google Scholar 

  124. Ganguli, M. et al. Apolipoprotein E polymorphism and Alzheimer disease: the Indo-US Cross-National Dementia Study. Arch. Neurol. 57, 824–830 (2000).

    CAS  PubMed  Google Scholar 

  125. Martin-Aragon, S., Benedi, J. M. & Villar, A. M. Modifications on antioxidant capacity and lipid peroxidation in mice under fraxetin treatment. J. Pharm. Pharmacol. 49, 49–52 (1997).

    CAS  PubMed  Google Scholar 

  126. Sreejayan, N. & Rao, M. N. Nitric oxide scavenging by curcuminoids. J. Pharm. Pharmacol. 49, 105–107 (1997).

    CAS  PubMed  Google Scholar 

  127. Tsankova, N., Renthal, W., Kumar, A. & Nestler, E. J. Epigenetic regulation in psychiatric disorders. Nature Rev. Neurosci. 8, 355–367 (2007).

    CAS  Google Scholar 

  128. Garzon, D., Yu, G. & Fahnestock, M. A new brain-derived neurotrophic factor transcript and decrease in brain-derived neurotrophic factor transcripts 1, 2 and 3 in Alzheimer's disease parietal cortex. J. Neurochem. 82, 1058–1064 (2002).

    CAS  PubMed  Google Scholar 

  129. Chen, W. G. et al. Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 302, 885–889 (2003).

    CAS  PubMed  Google Scholar 

  130. Kuningas, M., Putters, M., Westendorp, R. G., Slagboom, P. E. & van Heemst, D. SIRT1 gene, age-related diseases, and mortality: the Leiden 85-plus study. J. Gerontol. A Biol. Sci. Med. Sci. 62, 960–965 (2007).

    PubMed  Google Scholar 

  131. Vaynman, S. & Gomez-Pinilla, F. Revenge of the “sit”: how lifestyle impacts neuronal and cognitive health through molecular systems that interface energy metabolism with neuronal plasticity. J. Neurosci. Res. 84, 699–715 (2006).

    CAS  PubMed  Google Scholar 

  132. Wu, A., Ying, Z. & Gomez-Pinilla, F. DHA dietary supplementation enhances the effects of exercise on synaptic plasticity and cognition. Neuroscience (in the press).

  133. Garcia, J. & Ervin, F. R. Appetites, aversions, and addictions: a model for visceral memory. Recent Adv. Biol. Psychiatry 10, 284–293 (1968).

    CAS  PubMed  Google Scholar 

  134. Arana, F. S. et al. Dissociable contributions of the human amygdala and orbitofrontal cortex to incentive motivation and goal selection. J. Neurosci. 23, 9632–9638 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Thompson, M. E. & Wrangham, R. W. Diet and reproductive function in wild female chimpanzees (Pan troglodytes schweinfurthii) at Kibale National Park, Uganda. Am. J. Phys. Anthropol. 135, 171–181 (2008).

    PubMed  Google Scholar 

  136. Gibbons, A. Paleoanthropology. Food for thought. Science 316, 1558–1560 (2007).

    CAS  PubMed  Google Scholar 

  137. Crawford, M. A. & Sinclair, A. J. The limitations of whole tissue analysis to define linolenic acid deficiency. J. Nutr. 102, 1315–1321 (1972).

    CAS  PubMed  Google Scholar 

  138. Crawford, M. A. et al. Evidence for the unique function of docosahexaenoic acid during the evolution of the modern hominid brain. Lipids 34 (Suppl.), 39–47 (1999).

    Google Scholar 

  139. Hillman, C. H., Erickson, K. I. & Kramer, A. F. Be smart, exercise your heart: exercise effects on brain and cognition. Nature Rev. Neurosci. 9, 58–65 (2008).

    CAS  Google Scholar 

  140. Gomez-Pinilla, F. The influences of diet and exercise on mental health through hormesis. Ageing Res. Rev. 7, 49–62 (2008).

    CAS  PubMed  Google Scholar 

  141. Kramer, A. F. et al. Ageing, fitness and neurocognitive function. Nature 400, 418–419 (1999).

    CAS  PubMed  Google Scholar 

  142. Winter, B. et al. High impact running improves learning. Neurobiol. Learn. Mem. 87, 597–609 (2007).

    PubMed  Google Scholar 

  143. van Praag, H., Kempermann, G. & Gage, F. H. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature Neurosci. 2, 266–270 (1999).

    CAS  PubMed  Google Scholar 

  144. Pereira, A. C. et al. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc. Natl Acad. Sci. USA 104, 5638–5643 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Vaynman, S., Ying, Z. & Gomez-Pinilla, F. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur. J. Neurosci. 20, 2580–2590 (2004).

    PubMed  Google Scholar 

  146. Laurin, D., Verreault, R., Lindsay, J., MacPherson, K. & Rockwood, K. Physical activity and risk of cognitive impairment and dementia in elderly persons. Arch. Neurol. 58, 498–504 (2001).

    CAS  PubMed  Google Scholar 

  147. Ding, Q., Vaynman, S., Souda, P., Whitelegge, J. P. & Gomez-Pinilla, F. Exercise affects energy metabolism and neural plasticity-related proteins in the hippocampus as revealed by proteomic analysis. Eur. J. Neurosci. 24, 1265–1276 (2006).

    PubMed  Google Scholar 

  148. van Gelder, B. M., Tijhuis, M., Kalmijn, S. & Kromhout, D. Fish consumption, n-3 fatty acids, and subsequent 5-y cognitive decline in elderly men: the Zutphen Elderly Study. Am. J. Clin. Nutr. 85, 1142–1147 (2007).

    CAS  PubMed  Google Scholar 

  149. Hashimoto, M. et al. Chronic administration of docosahexaenoic acid ameliorates the impairment of spatial cognition learning ability in amyloid β-infused rats. J. Nutr. 135, 549–555 (2005).

    CAS  PubMed  Google Scholar 

  150. Calon, F. et al. Docosahexaenoic acid protects from dendritic pathology in an Alzheimer's disease mouse model. Neuron 43, 633–645 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Letenneur, L., Proust-Lima, C., Le Gouge, A., Dartigues, J. F. & Barberger-Gateau, P. Flavonoid intake and cognitive decline over a 10-year period. Am. J. Epidemiol. 165, 1364–1371 (2007).

    CAS  PubMed  Google Scholar 

  152. Bryan, J., Calvaresi, E. & Hughes, D. Short-term folate, vitamin B-12 or vitamin B-6 supplementation slightly affects memory performance but not mood in women of various ages. J. Nutr. 132, 1345–1356 (2002).

    CAS  PubMed  Google Scholar 

  153. Sasaki, H. et al. Vitamin B12 improves cognitive disturbance in rodents fed a choline-deficient diet. Pharmacol. Biochem. Behav. 43, 635–639 (1992).

    CAS  PubMed  Google Scholar 

  154. Przybelski, R. J. & Binkley, N. C. Is vitamin D important for preserving cognition? A positive correlation of serum 25-hydroxyvitamin D concentration with cognitive function. Arch. Biochem. Biophys. 460, 202–205 (2007).

    CAS  PubMed  Google Scholar 

  155. Holmes, G. L. et al. Seizure-induced memory impairment is reduced by choline supplementation before or after status epilepticus. Epilepsy Res. 48, 3–13 (2002).

    CAS  PubMed  Google Scholar 

  156. McCann, J. C., Hudes, M. & Ames, B. N. An overview of evidence for a causal relationship between dietary availability of choline during development and cognitive function in offspring. Neurosci. Biobehav. Rev. 30, 696–712 (2006).

    CAS  PubMed  Google Scholar 

  157. Wengreen, H. J. et al. Antioxidant intake and cognitive function of elderly men and women: the Cache County Study. J. Nutr. Health Aging 11, 230–237 (2007).

    CAS  PubMed  Google Scholar 

  158. Schram, M. T. et al. Serum calcium and cognitive function in old age. J. Am. Geriatr. Soc. 55, 1786–1792 (2007).

    PubMed  Google Scholar 

  159. Ortega, R. M. et al. Dietary intake and cognitive function in a group of elderly people. Am. J. Clin. Nutr. 66, 803–809 (1997).

    CAS  PubMed  Google Scholar 

  160. Gao, S. et al. Selenium level and cognitive function in rural elderly Chinese. Am. J. Epidemiol. 165, 955–965 (2007).

    PubMed  Google Scholar 

  161. Pajonk, F. G. et al. Cognitive decline correlates with low plasma concentrations of copper in patients with mild to moderate Alzheimer's disease. J. Alzheimers Dis. 8, 23–27 (2005).

    CAS  PubMed  Google Scholar 

  162. Murray-Kolb, L. E. & Beard, J. L. Iron treatment normalizes cognitive functioning in young women. Am. J. Clin. Nutr. 85, 778–787 (2007).

    CAS  PubMed  Google Scholar 

  163. Adams, P. F. & Marano, M. A. Current estimates for the national health interview survey, 1994. Vital Health Stat. 10 193 (Pt 2), 261–520 (1995).

    Google Scholar 

  164. Kaati, G., Bygren, L. O., Pembrey, M. & Sjöström, M. Transgenerational response to nutrition, early life circumstances and longevity. Eur. J. Hum. Genet. 15, 784–790 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

In the elaboration of this article, I greatly benefited from inspirational discussions with G. Cole, I. Cook, R. Edgerton, T. Jones and D. Glanzman. I would also like to thank A. She and S. Kim for valuable editorial assistance. I am thankful to the reviewers for their constructive feedback, and to the National Institute of Neurological Disorder and Stroke (NS50465) for funding support.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Fernando Gómez-Pinilla's homepage (1)

Fernando Gómez-Pinilla's homepage (2)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez-Pinilla, F. Brain foods: the effects of nutrients on brain function. Nat Rev Neurosci 9, 568–578 (2008). https://doi.org/10.1038/nrn2421

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2421

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing