Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neurovascular signalling defects in neurodegeneration

Key Points

  • The vascular and nervous systems share a variety of mechanisms and developmental cues, and this results in their growth along common anatomical pathways. It is therefore not surprising that they continue to share similar survival signals throuough adult life and, possibly, in disease.

  • Vascular defects are a common feature of several neurodegenerative disorders, for example, Alzheimer's disease, Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS), and they often arise before the onset of neuron loss and neurological symptoms.

  • Several molecules that provide pro-survival signals to both the nervous and vascular systems have been identified. Some of these molecules, which are referred to as angioneurins, were originally discovered as neurotrophic factors, whereas others were discovered as angiogenic factors.

  • VEGF is perhaps the best example of an angioneurin. It was initially identified as an angiogenic factor, but it in fact emerged in the evolution of animals that lack a vascular network, in which it regulates neural developments. Emerging new evidence points to an important role for VEGF in neurodegeneration, both in animal models and in human diseases.

  • Angioneurins might affect the onset and progression of neurodegeneration by pleiotropic mechanisms: they directly protect neurons from ischaemia, toxins and other causes of injury; promote neurogenesis; modulate synaptic plasticity; stimulate neurite extension and branching; and promote myelination.

  • The translation of these concepts to therapy is leading to the development of novel strategies to treat animal models of motor-neuron diseases, such as ALS, PD, multiple sclerosis and peripheral neuropathies. When and to what extent these findings will provide clinical benefits to patients remains to be seen.

Abstract

It is anticipated that by 2040 neurodegeneration will affect 40 million people worldwide, more than twice as many as today. The traditional neurocentric view holds that neurodegeneration is caused primarily by intrinsic neuronal defects. However, recent evidence indicates that the millions of blood vessels that criss-cross the nervous system might not be the silent bystanders they were originally considered. Indeed, recent genetic studies reveal that insufficient production of angiogenic signals, which stimulate the growth of blood vessels, can cause neurodegeneration. Remarkably, some angiogenic factors can also regulate neuroregeneration, and have direct neuroprotective and other effects on various neural cell types. Here we provide an overview of the molecules that affect both neural and vascular cell processes — to underline their duality, we term them angioneurins. Unravelling the molecular mechanisms by which these angioneurins act might create opportunities for developing new neurovascular medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evolution of vascular endothelial growth factor (VEGF) as a multi-tasking neuronal factor.
Figure 2: Principal angioneurins and their receptors.
Figure 3: Effect of angioneurins on the CNS vasculature and neurogenesis.
Figure 4: Effect of angioneurins on neuroprotection and synaptic plasticity.
Figure 5: Angioneurins promote innervation and axon sprouting.

Similar content being viewed by others

References

  1. Olofsson, B. & Page, D. T. Condensation of the central nervous system in embryonic Drosophila is inhibited by blocking hemocyte migration or neural activity. Dev. Biol. 279, 233–243 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Popovici, C., Isnardon, D., Birnbaum, D. & Roubin, R. Caenorhabditis elegans receptors related to mammalian vascular endothelial growth factor receptors are expressed in neural cells. Neurosci. Lett. 329, 116–120 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Chao, M. V. Trophic factors: an evolutionary cul-de-sac or door into higher neuronal function? J. Neurosci. Res. 59, 353–355 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Alzheimer, A. Uber eine eigenartig erkrankung der hirnrinde. Psychiatrie Psych. Ger. Med. 65, 146–148 (1907).

    Google Scholar 

  5. de la Torre, J. C. Alzheimer's disease is a vasocognopathy: a new term to describe its nature. Neurol. Res. 26, 517–524 (2004).

    Article  PubMed  Google Scholar 

  6. Joutel, A. et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 383, 707–710 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Kirk, S., Frank, J. A. & Karlik, S. Angiogenesis in multiple sclerosis: is it good, bad or an epiphenomenon? J. Neurol. Sci. 217, 125–130 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Faucheux, B. A., Bonnet, A. M., Agid, Y. & Hirsch, E. C. Blood vessels change in the mesencephalon of patients with Parkinson's disease. Lancet 353, 981–982 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Westin, J. E. et al. Endothelial proliferation and increased blood–brain barrier permeability in the basal ganglia in a rat model of 3,4-dihydroxyphenyl-L-alanine-induced dyskinesia. J. Neurosci. 26, 9448–9461 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kortekaas, R. et al. Blood-brain barrier dysfunction in Parkinsonian midbrain in vivo. Ann. Neurol. 57, 176–179 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Marchal, G. et al. PET imaging of cerebral perfusion and oxygen consumption in acute ischaemic stroke: relation to outcome. Lancet 341, 925–927 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Rigau, V. et al. Angiogenesis is associated with blood–brain barrier permeability in temporal lobe epilepsy. Brain 130, 1942–1956 (2007).

    Article  PubMed  Google Scholar 

  13. Sherwood, A., Hinderliter, A. L., Watkins, L. L., Waugh, R. A. & Blumenthal, J. A. Impaired endothelial function in coronary heart disease patients with depressive symptomatology. J. Am. Coll. Cardiol. 46, 656–659 (2005).

    Article  PubMed  Google Scholar 

  14. Veves, A. et al. Endothelial dysfunction and the expression of endothelial nitric oxide synthetase in diabetic neuropathy, vascular disease, and foot ulceration. Diabetes 47, 457–463 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Kirchmair, R. et al. Therapeutic angiogenesis inhibits or rescues chemotherapy-induced peripheral neuropathy: taxol- and thalidomide-induced injury of vasa nervorum is ameliorated by VEGF. Mol. Ther. 15, 69–75 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Huang, E. J. & Reichardt, L. F. Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci. 24, 677–736 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kermani, P. & Hempstead, B. Brain-derived neurotrophic factor: a newly described mediator of angiogenesis. Trends Cardiovasc. Med. 17, 140–143 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kermani, P. et al. Neurotrophins promote revascularization by local recruitment of TrkB+ endothelial cells and systemic mobilization of hematopoietic progenitors. J. Clin. Invest. 115, 653–663 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Capsoni, S. et al. Alzheimer-like neurodegeneration in aged antinerve growth factor transgenic mice. Proc. Natl Acad. Sci. USA 97, 6826–6831 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Canals, J. M. et al. Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington's disease. J. Neurosci. 24, 7727–7739 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. von Bohlen und Halbach, O., Minichiello, L. & Unsicker, K. Haploinsufficiency for trkB and trkC receptors induces cell loss and accumulation of α-synuclein in the substantia nigra. Faseb J. 19, 1740–1742 (2005). This study showed that impairment in TrkB and/or TrkC signalling induces a phenotype in the aged substantia nigra that includes two hallmarks of Parkinson's disease: the loss of tyrosine-hydroxylase-positive neurons and axons and the accumulation of large neuronal deposits of α-synuclein.

    Article  CAS  Google Scholar 

  22. Lyons, W. E. et al. Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities. Proc. Natl Acad. Sci. USA 96, 15239–15244 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Carmeliet, P. Blood vessels and nerves: common signals, pathways and diseases. Nature Rev. Genet. 4, 710–720 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Abid, A., Ismail, M., Mehdi, S. Q. & Khaliq, S. Identification of novel mutations in the SEMA4A gene associated with retinal degenerative diseases. J. Med. Genet. 43, 378–381 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Carmeliet, P. Mechanisms of angiogenesis and arteriogenesis. Nature Med. 6, 389–395 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Oosthuyse, B. et al. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nature Genet. 28, 131–138 (2001). VEGF has always been regarded as the most important and most specific angiogenic factor. This study was the first to show that VEGF also has essential activities in the nervous system.

    Article  CAS  PubMed  Google Scholar 

  27. Lambrechts, D. et al. VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nature Genet. 34, 383–394 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Shiote, M. et al. Reduction of a vascular endothelial growth factor receptor, fetal liver kinase-1, by antisense oligonucleotides induces motor neuron death in rat spinal cord exposed to hypoxia. Neuroscience 132, 175–182 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Storkebaum, E. et al. Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nature Neurosci. 8, 85–92 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, Y. et al. VEGF-overexpressing transgenic mice show enhanced post-ischemic neurogenesis and neuromigration. J. Neurosci. Res. 85, 740–747 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Lemmens, R. et al. Overexpression of mutant superoxide dismutase 1 causes a motor axonopathy in the zebrafish. Hum. Mol. Genet. 16, 2359–2365 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Sopher, B. L. et al. Androgen receptor YAC transgenic mice recapitulate SBMA motor neuronopathy and implicate VEGF164 in the motor neuron degeneration. Neuron 41, 687–699 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Chiappelli, M. et al. VEGF gene and phenotype relation with Alzheimer's disease and mild cognitive impairment. Rejuvenation Res. 9, 485–493 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Yang, S. P. et al. Co-accumulation of vascular endothelial growth factor with β-amyloid in the brain of patients with Alzheimer's disease. Neurobiol. Aging 25, 283–290 (2004).

    Article  PubMed  CAS  Google Scholar 

  35. Lopez-Lopez, C., Dietrich, M. O., Metzger, F., Loetscher, H. & Torres-Aleman, I. Disturbed cross talk between insulin-like growth factor I and AMP-activated protein kinase as a possible cause of vascular dysfunction in the amyloid precursor protein/presenilin 2 mouse model of Alzheimer's disease. J. Neurosci. 27, 824–831 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Milosevic, J. et al. Lack of hypoxia-inducible factor-1α impairs midbrain neural precursor cells involving vascular endothelial growth factor signaling. J. Neurosci. 27, 412–421 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nishijima, K. et al. Vascular endothelial growth factor-A is a survival factor for retinal neurons and a critical neuroprotectant during the adaptive response to ischemic injury. Am. J. Pathol. 171, 53–67 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ishii, Y. et al. Mouse brains deficient in neuronal PDGF receptor-β develop normally but are vulnerable to injury. J. Neurochem. 98, 588–600 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Greenway, M. J. et al. ANG mutations segregate with familial and 'sporadic' amyotrophic lateral sclerosis. Nature Genet. 38, 411–413 (2006). ANG was originally identified as a molecule involved in angiogenic processes. This paper revealed that loss-of-function mutations in the gene cause ALS.

    Article  CAS  PubMed  Google Scholar 

  40. Lambrechts, D., Lafuste, P., Carmeliet, P. & Conway, E. M. Another angiogenic gene linked to amyotrophic lateral sclerosis. Trends Mol. Med. 12, 345–347 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Subramanian, V. & Feng, Y. A new role for angiogenin in neurite growth and pathfinding: implications for amyotrophic lateral sclerosis. Hum. Mol. Genet. 16, 1445–1453 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Cruts, M. et al. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442, 920–924 (2006). This paper reported that loss-of-funtion mutations in the gene that encodes PGRN cause ubiquitin-positive FTD.

    Article  CAS  PubMed  Google Scholar 

  43. He, Z., Ong, C. H., Halper, J. & Bateman, A. Progranulin is a mediator of the wound response. Nature Med. 9, 225–229 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Tangkeangsirisin, W. & Serrero, G. PC cell-derived growth factor (PCDGF/GP88, progranulin) stimulates migration, invasiveness and VEGF expression in breast cancer cells. Carcinogenesis 25, 1587–1592 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Tesseur, I. et al. Deficiency in neuronal TGF-β signaling promotes neurodegeneration and Alzheimer's pathology. J. Clin. Invest. 116, 3060–3069 (2006). This article revealed that TGFβRII expression is reduced in early Alzheimer's disease patients, and that neuronal expression of a dominant-negative TGFβRII in the mouse model of AD results in adult-onset neuron loss and symptom aggravation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brionne, T. C., Tesseur, I., Masliah, E. & Wyss-Coray, T. Loss of TGF-β1 leads to increased neuronal cell death and microgliosis in mouse brain. Neuron 40, 1133–1145 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Buckwalter, M. et al. Molecular and functional dissection of TGF-β1-induced cerebrovascular abnormalities in transgenic mice. Ann. NY Acad. Sci. 977, 87–95 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Gaertner, R. F. et al. Reduced brain tissue perfusion in TGF-β1 transgenic mice showing Alzheimer's disease-like cerebrovascular abnormalities. Neurobiol. Dis. 19, 38–46 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Wyss-Coray, T. et al. TGF-β1 promotes microglial amyloid-β clearance and reduces plaque burden in transgenic mice. Nature Med. 7, 612–618 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Tooyama, I. et al. Loss of basic fibroblast growth factor in substantia nigra neurons in Parkinson's disease. Neurology 43, 372–376 (1993).

    Article  CAS  PubMed  Google Scholar 

  51. Whitaker, V. R., Cui, L., Miller, S., Yu, S. P. & Wei, L. Whisker stimulation enhances angiogenesis in the barrel cortex following focal ischemia in mice. J. Cereb Blood Flow Metab. 27, 57–68 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Lee, S. et al. Autocrine VEGF signaling is required for vascular homeostasis. Cell 130, 691–703 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ahmad, S. et al. Direct evidence for endothelial vascular endothelial growth factor receptor-1 function in nitric oxide-mediated angiogenesis. Circ. Res. 99, 715–722 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Zlokovic, B. V. Neurovascular mechanisms of Alzheimer's neurodegeneration. Trends Neurosci. 28, 202–208 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Dohgu, S. et al. Transforming growth factor-β1 upregulates the tight junction and P-glycoprotein of brain microvascular endothelial cells. Cell. Mol. Neurobiol. 24, 491–497 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Date, I. et al. Hepatocyte growth factor attenuates cerebral ischemia-induced increase in permeability of the blood–brain barrier and decreases in expression of tight junctional proteins in cerebral vessels. Neurosci. Lett. 407, 141–145 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Bendfeldt, K., Radojevic, V., Kapfhammer, J. & Nitsch, C. Basic fibroblast growth factor modulates density of blood vessels and preserves tight junctions in organotypic cortical cultures of mice: a new in vitro model of the blood–brain barrier. J. Neurosci. 27, 3260–3267 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Reuss, B., Dono, R. & Unsicker, K. Functions of fibroblast growth factor (FGF)-2 and FGF-5 in astroglial differentiation and blood–brain barrier permeability: evidence from mouse mutants. J. Neurosci. 23, 6404–6412 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nico, B. et al. HIF activation and VEGF overexpression are coupled with ZO-1 up-phosphorylation in the brain of dystrophic MDX mouse. Brain Pathol. 17, 399–406 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Croll, S. D., Goodman, J. H. & Scharfman, H. E. Vascular endothelial growth factor (VEGF) in seizures: a double-edged sword. Adv. Exp. Med. Biol. 548, 57–68 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rite, I., Machado, A., Cano, J. & Venero, J. L. Blood–brain barrier disruption induces in vivo degeneration of nigral dopaminergic neurons. J. Neurochem. 101, 1567–1582 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Heinicke, K. et al. Excessive erythrocytosis in adult mice overexpressing erythropoietin leads to hepatic, renal, neuronal, and muscular degeneration. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R947–R956 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Lambrechts, D. & Carmeliet, P. VEGF at the neurovascular interface: therapeutic implications for motor neuron disease. Biochim. Biophys. Acta 1762, 1109–1121 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Zhao, M. et al. Fibroblast growth factor receptor-1 is required for long-term potentiation, memory consolidation, and neurogenesis. Biol. Psychiatry 62, 381–390 (2007). This article showed that FGFR1 is required for the proliferation of neural progenitor cells as well as the generation of new neurons in the adult dentate gyrus. Moreover, deficits in neurogenesis in Fgfr1 -mutant mice were accompanied by a severe impairment of LTP and significant deficits in memory consolidation.

    Article  CAS  PubMed  Google Scholar 

  65. Holmes, D. I. & Zachary, I. The vascular endothelial growth factor (VEGF) family: angiogenic factors in health and disease. Genome Biol. 6, 209 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Cheng, B. et al. Basic fibroblast growth factor selectively increases AMPA-receptor subunit GluR1 protein level and differentially modulates Ca2+ responses to AMPA and NMDA in hippocampal neurons. J. Neurochem. 65, 2525–2536 (1995).

    Article  CAS  PubMed  Google Scholar 

  67. McCloskey, D. P., Croll, S. D. & Scharfman, H. E. Depression of synaptic transmission by vascular endothelial growth factor in adult rat hippocampus and evidence for increased efficacy after chronic seizures. J. Neurosci. 25, 8889–8897 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Qiu, M. H., Zhang, R. & Sun, F. Y. Enhancement of ischemia-induced tyrosine phosphorylation of Kv1.2 by vascular endothelial growth factor via activation of phosphatidylinositol 3-kinase. J. Neurochem. 87, 1509–1517 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Schober, A. et al. GDNF applied to the MPTP-lesioned nigrostriatal system requires TGF-β for its neuroprotective action. Neurobiol. Dis. 25, 378–391 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Sibilia, M., Steinbach, J. P., Stingl, L., Aguzzi, A. & Wagner, E. F. A strain-independent postnatal neurodegeneration in mice lacking the EGF receptor. Embo J. 17, 719–731 (1998). EGFR has recently been shown to be involved in neurodegeneration: this paper showed that mice that lack EGFR die at 1 month of age due to progressive neurodegeneration that is characterized by the apoptotis of neurons and glia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Boillee, S. et al. Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312, 1389–1392 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Lu, L. et al. Mutant Cu/Zn-superoxide dismutase associated with amyotrophic lateral sclerosis destabilizes vascular endothelial growth factor mRNA and downregulates its expression. J. Neurosci. 27, 7929–7938 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lievens, J. C., Rival, T., Iche, M., Chneiweiss, H. & Birman, S. Expanded polyglutamine peptides disrupt EGF receptor signaling and glutamate transporter expression in Drosophila. Hum. Mol. Genet. 14, 713–724 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Grothe, C., Haastert, K. & Jungnickel, J. Physiological function and putative therapeutic impact of the FGF-2 system in peripheral nerve regeneration—lessons from in vivo studies in mice and rats. Brain Res. Rev. 51, 293–299 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Ohab, J. J., Fleming, S., Blesch, A. & Carmichael, S. T. A neurovascular niche for neurogenesis after stroke. J. Neurosci. 26, 13007–13016 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Warner-Schmidt, J. L. & Duman, R. S. VEGF is an essential mediator of the neurogenic and behavioral actions of antidepressants. Proc. Natl Acad. Sci. USA 104, 4647–4652 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cao, L. et al. VEGF links hippocampal activity with neurogenesis, learning and memory. Nature Genet. 36, 827–835 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Fabel, K. et al. VEGF is necessary for exercise-induced adult hippocampal neurogenesis. Eur. J. Neurosci. 18, 2803–2812 (2003).

    Article  PubMed  Google Scholar 

  79. Sun, Y. et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J. Clin. Invest. 111, 1843–1851 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Louissaint, A. Jr, Rao, S., Leventhal, C. & Goldman, S. A. Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain. Neuron 34, 945–960 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Heine, V. M., Zareno, J., Maslam, S., Joels, M. & Lucassen, P. J. Chronic stress in the adult dentate gyrus reduces cell proliferation near the vasculature and VEGF and Flk-1 protein expression. Eur. J. Neurosci. 21, 1304–1314 (2005).

    Article  PubMed  Google Scholar 

  82. Corti, S. et al. Neural stem cells LewisX+ CXCR4+ modify disease progression in an amyotrophic lateral sclerosis model. Brain 130, 1289–1305 (2007).

    Article  PubMed  Google Scholar 

  83. Buckwalter, M. S. et al. Chronically increased transforming growth factor-β1 strongly inhibits hippocampal neurogenesis in aged mice. Am. J. Pathol. 169, 154–164 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Holmberg, J. et al. Ephrin-A2 reverse signaling negatively regulates neural progenitor proliferation and neurogenesis. Genes Dev. 19, 462–471 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ricard, J., Salinas, J., Garcia, L. & Liebl, D. J. EphrinB3 regulates cell proliferation and survival in adult neurogenesis. Mol. Cell. Neurosci. 31, 713–722 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Jacobsen, J. S. et al. Early-onset behavioral and synaptic deficits in a mouse model of Alzheimer's disease. Proc. Natl Acad. Sci. USA 103, 5161–5166 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Xu, J. Y. et al. Vascular endothelial growth factor inhibits outward delayed-rectifier potassium currents in acutely isolated hippocampal neurons. Neuroscience 118, 59–67 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Perillan, P. R., Chen, M., Potts, E. A. & Simard, J. M. Transforming growth factor-β1 regulates Kir2.3 inward rectifier K+ channels via phospholipase C and protein kinase C-δ in reactive astrocytes from adult rat brain. J. Biol. Chem. 277, 1974–1980 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Chin, J., Liu, R. Y., Cleary, L. J., Eskin, A. & Byrne, J. H. TGF-β1-induced long-term changes in neuronal excitability in Aplysia sensory neurons depend on MAPK. J. Neurophysiol. 95, 3286–3290 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Akimoto, M. et al. Hepatocyte growth factor as an enhancer of nmda currents and synaptic plasticity in the hippocampus. Neuroscience 128, 155–162 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Maher, F. O., Clarke, R. M., Kelly, A., Nally, R. E. & Lynch, M. A. Interaction between interferon γ and insulin-like growth factor-1 in hippocampus impacts on the ability of rats to sustain long-term potentiation. J. Neurochem. 96, 1560–1571 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Ishiyama, J., Saito, H. & Abe, K. Epidermal growth factor and basic fibroblast growth factor promote the generation of long-term potentiation in the dentate gyrus of anaesthetized rats. Neurosci. Res. 12, 403–411 (1991).

    Article  CAS  PubMed  Google Scholar 

  93. Li, A. J., Suzuki, S., Suzuki, M., Mizukoshi, E. & Imamura, T. Fibroblast growth factor-2 increases functional excitatory synapses on hippocampal neurons. Eur. J. Neurosci. 16, 1313–1324 (2002).

    Article  PubMed  Google Scholar 

  94. O'Kusky, J. R., Ye, P. & D'Ercole, A. J. Insulin-like growth factor-I promotes neurogenesis and synaptogenesis in the hippocampal dentate gyrus during postnatal development. J. Neurosci. 20, 8435–8442 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lu, B., Pang, P. T. & Woo, N. H. The yin and yang of neurotrophin action. Nature Rev. Neurosci. 6, 603–614 (2005).

    Article  CAS  Google Scholar 

  96. Pun, S., Santos, A. F., Saxena, S., Xu, L. & Caroni, P. Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF. Nature Neurosci. 9, 408–419 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Kang, H., Tian, L. & Thompson, W. Terminal Schwann cells guide the reinnervation of muscle after nerve injury. J. Neurocytol. 32, 975–985 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. De Winter, F. et al. The expression of the chemorepellent Semaphorin 3A is selectively induced in terminal Schwann cells of a subset of neuromuscular synapses that display limited anatomical plasticity and enhanced vulnerability in motor neuron disease. Mol. Cell. Neurosci. 32, 102–117 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Messi, M. L. & Delbono, O. Target-derived trophic effect on skeletal muscle innervation in senescent mice. J. Neurosci. 23, 1351–1359 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Dobrowolny, G. et al. Muscle expression of a local Igf-1 isoform protects motor neurons in an ALS mouse model. J. Cell Biol. 168, 193–199 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ozdinler, P. H. & Macklis, J. D. IGF-I specifically enhances axon outgrowth of corticospinal motor neurons. Nature Neurosci. 9, 1371–1381 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Szebenyi, G. et al. Fibroblast growth factor-2 promotes axon branching of cortical neurons by influencing morphology and behavior of the primary growth cone. J. Neurosci. 21, 3932–3941 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Caroni, P. & Grandes, P. Nerve sprouting in innervated adult skeletal muscle induced by exposure to elevated levels of insulin-like growth factors. J. Cell Biol. 110, 1307–1317 (1990).

    Article  CAS  PubMed  Google Scholar 

  104. Braak, H. & Del Tredici, K. Poor and protracted myelination as a contributory factor to neurodegenerative disorders. Neurobiol. Aging 25, 19–23 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Schratzberger, P. et al. Favorable effect of VEGF gene transfer on ischemic peripheral neuropathy. Nature Med. 6, 405–413 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Kumar, S., Biancotti, J. C., Yamaguchi, M. & de Vellis, J. Combination of growth factors enhances remyelination in a cuprizone-induced demyelination mouse model. Neurochem. Res. 32, 783–797 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Li, X., Gonias, S. L. & Campana, W. M. Schwann cells express erythropoietin receptor and represent a major target for Epo in peripheral nerve injury. Glia 51, 254–265 (2005).

    Article  PubMed  Google Scholar 

  108. Zeger, M. et al. Insulin-like growth factor type 1 receptor signaling in the cells of oligodendrocyte lineage is required for normal in vivo oligodendrocyte development and myelination. Glia 55, 400–411 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Murtie, J. C., Zhou, Y. X., Le, T. Q., Vana, A. C. & Armstrong, R. C. PDGF and FGF2 pathways regulate distinct oligodendrocyte lineage responses in experimental demyelination with spontaneous remyelination. Neurobiol. Dis. 19, 171–182 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Mason, J. L., Xuan, S., Dragatsis, I., Efstratiadis, A. & Goldman, J. E. Insulin-like growth factor (IGF) signaling through type 1 IGF receptor plays an important role in remyelination. J. Neurosci. 23, 7710–7718 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Le Bras, B. et al. VEGF-C is a trophic factor for neural progenitors in the vertebrate embryonic brain. Nature Neurosci. 9, 340–348 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Kaspar, B. K., Llado, J., Sherkat, N., Rothstein, J. D. & Gage, F. H. Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science 301, 839–842 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Azzouz, M. et al. VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature 429, 413–417 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Li, W. et al. Muscle-derived but not centrally derived transgene GDNF is neuroprotective in G93A-SOD1 mouse model of ALS. Exp. Neurol. 203, 457–471 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Musaro, A., McCullagh, K. J., Naya, F. J., Olson, E. N. & Rosenthal, N. IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1. Nature 400, 581–585 (1999).

    Article  CAS  PubMed  Google Scholar 

  116. Arsic, N. et al. Vascular endothelial growth factor stimulates skeletal muscle regeneration in vivo. Mol. Ther. 10, 844–854 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Shults, C. W., Ray, J., Tsuboi, K. & Gage, F. H. Fibroblast growth factor-2-producing fibroblasts protect the nigrostriatal dopaminergic system from 6-hydroxydopamine. Brain Res. 883, 192–204 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Koike, H. et al. Prevention of onset of Parkinson's disease by in vivo gene transfer of human hepatocyte growth factor in rodent model: a model of gene therapy for Parkinson's disease. Gene Ther. 13, 1639–1644 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Yasuhara, T. et al. The differences between high and low-dose administration of VEGF to dopaminergic neurons of in vitro and in vivo Parkinson's disease model. Brain Res. 1038, 1–10 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Casper, D. et al. Enhanced vascularization and survival of neural transplants with ex vivo angiogenic gene transfer. Cell Transplant. 11, 331–349 (2002).

    Article  PubMed  Google Scholar 

  121. Timmer, M. et al. Enhanced survival, reinnervation, and functional recovery of intrastriatal dopamine grafts co-transplanted with Schwann cells overexpressing high molecular weight FGF-2 isoforms. Exp. Neurol. 187, 118–136 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Lindvall, O. & Kokaia, Z. Stem cells for the treatment of neurological disorders. Nature 441, 1094–1096 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Jin, K. et al. FGF-2 promotes neurogenesis and neuroprotection and prolongs survival in a transgenic mouse model of Huntington's disease. Proc. Natl Acad. Sci. USA 102, 18189–18194 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zucchini, S., Barbieri, M. & Simonato, M. Alterations in seizure susceptibility and in seizure-induced plasticity after pharmacologic and genetic manipulation of the fibroblast growth factor-2 system. Epilepsia 46 (Suppl. 5), 52–58 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Ruffini, F. et al. Fibroblast growth factor-II gene therapy reverts the clinical course and the pathological signs of chronic experimental autoimmune encephalomyelitis in C57BL/6 mice. Gene Ther. 8, 1207–1213 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. Savino, C. et al. Delayed administration of erythropoietin and its non-erythropoietic derivatives ameliorates chronic murine autoimmune encephalomyelitis. J. Neuroimmunol. 172, 27–37 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Kleiter, I. et al. Inhibition of Smad7, a negative regulator of TGF-β signaling, suppresses autoimmune encephalomyelitis. J. Neuroimmunol. 187, 61–73 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Veldhoen, M., Hocking, R. J., Flavell, R. A. & Stockinger, B. Signals mediated by transforming growth factor-β initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease. Nature Immunol. 7, 1151–1156 (2006).

    Article  CAS  Google Scholar 

  129. Greenberg, D. A. & Jin, K. Growth factors and stroke. NeuroRx 3, 458–465 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Tuszynski, M. H. Nerve growth factor gene delivery: animal models to clinical trials. Dev. Neurobiol. 67, 1204–1215 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Weinstein, B. M. Vessels and nerves: marching to the same tune. Cell 120, 299–302 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. Carmeliet, P. & Tessier-Lavigne, M. Common mechanisms of nerve and blood vessel wiring. Nature 436, 193–200 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Schwarz, Q. et al. Vascular endothelial growth factor controls neuronal migration and cooperates with Sema3A to pattern distinct compartments of the facial nerve. Genes Dev. 18, 2822–2834 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Paris, D. et al. Impaired angiogenesis in a transgenic mouse model of cerebral amyloidosis. Neurosci. Lett. 366, 80–85 (2004).

    Article  CAS  PubMed  Google Scholar 

  135. Greenberg, S. M., Gurol, M. E., Rosand, J. & Smith, E. E. Amyloid angiopathy-related vascular cognitive impairment. Stroke 35, 2616–2619 (2004).

    Article  PubMed  Google Scholar 

  136. Casserly, I. & Topol, E. Convergence of atherosclerosis and Alzheimer's disease: inflammation, cholesterol, and misfolded proteins. Lancet 363, 1139–1146 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Takano, T., Han, X., Deane, R., Zlokovic, B. & Nedergaard, M. Two-photon imaging of astrocytic Ca2+ signaling and the microvasculature in experimental mice models of Alzheimer's disease. Ann. NY Acad. Sci. 1097, 40–50 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Niwa, K. et al. Cerebrovascular autoregulation is profoundly impaired in mice overexpressing amyloid precursor protein. Am. J. Physiol. Heart Circ. Physiol. 283, H315–H323 (2002).

    Article  CAS  PubMed  Google Scholar 

  139. Johnson, K. A. & Albert, M. S. Perfusion abnormalities in prodromal AD. Neurobiol. Aging 21, 289–292 (2000).

    Article  CAS  PubMed  Google Scholar 

  140. Iadecola, C. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nature Rev. Neurosci. 5, 347–360 (2004).

    Article  CAS  Google Scholar 

  141. Kaletta, T. & Hengartner, M. O. Finding function in novel targets: C. elegans as a model organism. Nature Rev. Drug Discov. 5, 387–398 (2006).

    Article  CAS  Google Scholar 

  142. Vande Velde, C. & Cleveland, D. W. VEGF: multitasking in ALS. Nature Neurosci. 8, 5–7 (2005).

    Article  CAS  PubMed  Google Scholar 

  143. Cleaver, O. & Melton, D. A. Endothelial signaling during development. Nature Med. 9, 661–668 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. Chen, K. S. et al. Disruption of a single allele of the nerve growth factor gene results in atrophy of basal forebrain cholinergic neurons and memory deficits. J. Neurosci. 17, 7288–7296 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Jackson, E. L. et al. PDGFRα-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron 51, 187–199 (2006).

    Article  CAS  PubMed  Google Scholar 

  146. Garcia de Yebenes, J., Yebenes, J. & Mena, M. A. Neurotrophic factors in neurodegenerative disorders: model of Parkinson's disease. Neurotox. Res. 2, 115–137 (2000).

    Article  CAS  PubMed  Google Scholar 

  147. Simonato, M., Tongiorgi, E. & Kokaia, M. Angels and demons: neurotrophic factors and epilepsy. Trends Pharmacol. Sci. 27, 631–638 (2006).

    Article  CAS  PubMed  Google Scholar 

  148. Royo, N. C. et al. Hippocampal vulnerability following traumatic brain injury: a potential role for neurotrophin-4/5 in pyramidal cell neuroprotection. Eur. J. Neurosci. 23, 1089–1102 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Torres-Peraza, J. et al. Mice heterozygous for neurotrophin-3 display enhanced vulnerability to excitotoxicity in the striatum through increased expression of N-methyl-D-aspartate receptors. Neuroscience 144, 462–471 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. Schratzberger, P. et al. Reversal of experimental diabetic neuropathy by VEGF gene transfer. J. Clin. Invest. 107, 1083–1092 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Fruttiger, M. et al. Defective oligodendrocyte development and severe hypomyelination in PDGF-A knockout mice. Development 126, 457–467 (1999).

    Article  CAS  PubMed  Google Scholar 

  152. Liu, S., Yu, D., Xu, Z. P., Riordan, J. F. & Hu, G. F. Angiogenin activates Erk1/2 in human umbilical vein endothelial cells. Biochem. Biophys. Res. Commun. 287, 305–310 (2001).

    Article  CAS  PubMed  Google Scholar 

  153. Xu, Z., Monti, D. M. & Hu, G. Angiogenin activates human umbilical artery smooth muscle cells. Biochem. Biophys. Res. Commun. 285, 909–914 (2001).

    Article  CAS  PubMed  Google Scholar 

  154. Subramanian, V., Crabtree, B. & Acharya, K. R. Human angiogenin is a neuroprotective factor and amyotrophic lateral sclerosis associated angiogenin variants affect neurite extension/pathfinding and survival of motor neurons. Hum. Mol. Genet. 17, 130–149 (2008).

    Article  CAS  PubMed  Google Scholar 

  155. Mason, I. Initiation to end point: the multiple roles of fibroblast growth factors in neural development. Nature Rev. Neurosci. 8, 583–596 (2007).

    Article  CAS  Google Scholar 

  156. Konig, H. G., Kogel, D., Rami, A. & Prehn, J. H. TGF-β1 activates two distinct type I receptors in neurons: implications for neuronal NF-κB signaling. J. Cell Biol. 168, 1077–1086 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Svensson, J. et al. Endocrine, liver-derived IGF-I is of importance for spatial learning and memory in old mice. J. Endocrinol. 189, 617–627 (2006). In this study, IGF1 production was inactivated in the liver of adult mice, resulting in impaired spatial working and reference memory as well as neurochemical disturbances that suggested synaptic dysfunction and early neurodegeneration. The decline in serum IGF1 with increasing age might therefore be important for the age-related decline in memory function.

    Article  CAS  PubMed  Google Scholar 

  158. Cheng, J. & Du, J. Mechanical stretch simulates proliferation of venous smooth muscle cells through activation of the insulin-like growth factor-1 receptor. Arterioscler. Thromb. Vasc. Biol. 27, 1744–1751 (2007).

    Article  CAS  PubMed  Google Scholar 

  159. Powell, E. M. et al. Genetic disruption of cortical interneuron development causes region- and GABA cell type-specific deficits, epilepsy, and behavioral dysfunction. J. Neurosci. 23, 622–631 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Sun, W., Funakoshi, H. & Nakamura, T. Overexpression of HGF retards disease progression and prolongs life span in a transgenic mouse model of ALS. J. Neurosci. 22, 6537–6548 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kato, N. et al. Nonviral gene transfer of human hepatocyte growth factor improves streptozotocin-induced diabetic neuropathy in rats. Diabetes 54, 846–854 (2005).

    Article  CAS  PubMed  Google Scholar 

  162. Morishita, R. et al. Potential role of a novel vascular modulator, hepatocyte growth factor (HGF), in cardiovascular disease: characterization and regulation of local HGF system. J. Atheroscler. Thromb. 4, 12–19 (1997).

    Article  CAS  PubMed  Google Scholar 

  163. Ebens, A. et al. Hepatocyte growth factor/scatter factor is an axonal chemoattractant and a neurotrophic factor for spinal motor neurons. Neuron 17, 1157–1172 (1996).

    Article  CAS  PubMed  Google Scholar 

  164. Amin, D. N., Hida, K., Bielenberg, D. R. & Klagsbrun, M. Tumor endothelial cells express epidermal growth factor receptor (EGFR) but not ErbB3 and are responsive to EGF and to EGFR kinase inhibitors. Cancer Res. 66, 2173–2180 (2006).

    Article  CAS  PubMed  Google Scholar 

  165. Chen, Z. Y., Asavaritikrai, P., Prchal, J. T. & Noguchi, C. T. Endogenous erythropoietin signaling is required for normal neural progenitor cell proliferation. J. Biol. Chem. 282, 25875–25883 (2007). This study illustrated that neural progenitor cells express EPOR at higher levels than mature neurons, that EPO stimulates the proliferation of embryonic neural progenitor cells and that endogenous EPO contributes to neural-progenitor-cell proliferation and maintenance.

    Article  CAS  PubMed  Google Scholar 

  166. Nadam, J. et al. Neuroprotective effects of erythropoietin in the rat hippocampus after pilocarpine-induced status epilepticus. Neurobiol. Dis. 25, 412–426 (2007).

    Article  CAS  PubMed  Google Scholar 

  167. Leist, M. et al. Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science 305, 239–242 (2004).

    Article  CAS  PubMed  Google Scholar 

  168. Noguchi, C. T., Asavaritikrai, P., Teng, R. & Jia, Y. Role of erythropoietin in the brain. Crit. Rev. Oncol. Hematol. 64, 159–171 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

D.L. is supported by the Research Foundation Flanders (FWO), Belgium; S.Z. was supported by the European Union Seventh framework program via a Marie Curie intra European fellowship; P.C. is supported by the ALS Association (ALSA), the Muscular Dystrophy Association (MDA) and the Motor Neurone Disease (MND) Association. The authors also wish to acknowledge all previous and current collaborators, who have contributed to the studies of the neurovascular link.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Carmeliet.

Ethics declarations

Competing interests

P.C. is named as an inventor on a patent application regarding the use of vascular endothelial growth factor to treat amyotrophic lateral sclerosis. The Flanders Interuniversity Institute for Biotechnology (VIB) is one of the joint owners of this patent application, and the said patent application has been licensed to an outside company. Neither VIB nor any of the authors have equity stakes in the company. However, VIB and some of the authors stand to eventually receive royalties.

Related links

Related links

DATABASES

OMIM

Alzheimer's disease

amyotrophic lateral sclerosis

frontotemporal dementia

Parkinson's disease

FURTHER INFORMATION

Peter Carmeliet's homepage

Flybase

Glossary

Blood–brain barrier

A structure that protects the brain from toxins in the blood while still allowing essential metabolites to cross. It is composed of tightly packed endothelial cells surrounded by astrocyte cell projections that are termed astrocytic feet.

Ischaemic penumbra

A term that is generally used to define ischaemic but still viable cerebral tissue that surrounds a core non-viable ischaemic zone.

Pleiotropism

The ability of a single protein to have several seemingly unrelated biological actions.

Basement membrane

A structure composed of an electron-dense membrane (the lamina densa) and an underlying network of reticular collagen fibrils that anchors blood vessels and epithelial cells to the loose connective tissue underneath.

Excitotoxicity

Cellular toxicity that involves the activation of glutamate receptors in the CNS. Glutamate, an excitatory amino-acid neurotransmitter, activates different types of ionotropic (ion channel-forming) and metabotropic (G-protein-coupled) receptors. Excessive activation of these receptors by high concentrations of glutamate or by neurotoxins leads to cell death.

Long-term potentiation

(LTP). The increase in synaptic strength that occurs following high-frequency stimulation of a synapse. LTP is thought to be the physiological mechanism that underlies learning and memory in the hippocampus.

Satellite cells

Cells that proliferate and differentiate to form regenerating myotubes in the regenerating muscle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zacchigna, S., Lambrechts, D. & Carmeliet, P. Neurovascular signalling defects in neurodegeneration. Nat Rev Neurosci 9, 169–181 (2008). https://doi.org/10.1038/nrn2336

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2336

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing