Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transcriptional regulation of vertebrate axon guidance and synapse formation

Key Points

  • Recent studies indicate that transcription factors have a crucial role in regulating axon guidance and synapse formation. Many of these factors act by regulating the response of neurons to guidance and synaptogenic cues.

  • Islet 2 (ISL2), ZIC2, chick brain factor 1 (CBF1) and CBF2 are transcription factors that have been implicated in retinotectal patterning. ISL2 and ZIC2 appear to exert their effects by regulating EphB2 expression. CBF1 and CBF2 seem to exert their effects by regulating ephrin A–EphA signalling.

  • ISL1, LIM1, LHX3 and LMX1B are LIM homeobox transcription factors that are implicated in the development of motor neuron projections. These factors are likely to affect axonal trajectories by influencing signalling by ephrins, semaphorins and fibroblast growth factors.

  • Neurogenin 2, LIM domain only 4 (LMO4) and neurodifferentiation D2 (NeuroD2) have an important role in patterning thalamocortical axons. LMO4 and NeuroD2 are expressed in the postnatal cortex and mediate the activity-dependent refinement of thalamocortical axon terminals.

  • Many of the transcription factors that affect axon guidance act by regulating the expression of ephrin and Eph receptor genes.

  • Several transcription factors have been implicated in synapse formation, maturation and elimination. Cyclic AMP-response element binding protein (CREB) and NeuroD2 are involved in synapse formation and maturation. Myocyte enhancer factor 2 (MEF2) and neurogenin 3 appear to be involved in synapse elimination. These factors act in part by regulating the responsiveness of neurons to neurotransmitters.

Abstract

The establishment of functional neural connections requires the growth of axons to specific target areas and the formation of synapses with appropriate synaptic partners. Several molecules that regulate axon guidance and synapse formation have been identified in the past decade, but it is unclear how a relatively limited number of factors can specify a large number of connections. Recent evidence indicates that transcription factors make a crucial contribution to the specification of connections in the nervous system by coordinating the response of neurons to guidance molecules and neurotransmitters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transcriptional control of midline crossing by retinal axons.
Figure 2: Transcriptional regulation of the topography of retinotectal projections.
Figure 3: Regulation of thalamocortical patterning by NeuroD2 and LMO4.
Figure 4: Specification of motorneuron projections.
Figure 5: Transcription factors implicated in the regulation of synapse formation and synapse elimination.

Similar content being viewed by others

References

  1. Tessier-Lavigne M. & Goodman, C. S. The molecular biology of axon guidance. Science 274, 1123–1133 (1996).

    CAS  PubMed  Google Scholar 

  2. Dickson, B. J. Molecular mechanisms of axon guidance. Science 298, 1959–1964 (2002).

    CAS  PubMed  Google Scholar 

  3. Huber, A. B., Kolodkin, A. L., Ginty, D. D. & Cloutier, J. F. Signaling at the growth cone: ligand-receptor complexes and the control of axon growth and guidance. Annu. Rev. Neurosci. 26, 509–563 (2003).

    CAS  PubMed  Google Scholar 

  4. Herrera, E. et al. Zic2 patterns binocular vision by specifying the uncrossed retinal projection. Cell 114, 545–557 (2003).

    CAS  PubMed  Google Scholar 

  5. Pak, W., Hindges, R., Lim, Y. S., Pfaff, S. L. & O'Leary, D. D. Magnitude of binocular vision controlled by islet-2 repression of a genetic program that specifies laterality of retinal axon pathfinding. Cell 119, 567–578 (2004). Together with reference 4, these were the first two papers to show transcriptional control of retinal axon guidance at the optic chiasm.

    CAS  PubMed  Google Scholar 

  6. Nagai, T. et al. The expression of the mouse Zic1, Zic2, and Zic3 gene suggests an essential role for Zic genes in body pattern formation. Dev. Biol. 182, 299–313 (1997).

    CAS  PubMed  Google Scholar 

  7. Nagai, T. et al. Zic2 regulates the kinetics of neurulation. Proc. Natl Acad. Sci. USA 97, 1618–1623 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Williams, S. E. et al. Ephrin-B2 and EphB1 mediate retinal axon divergence at the optic chiasm. Neuron 39, 919–935 (2003).

    CAS  PubMed  Google Scholar 

  9. Flanagan, J. G. & Vanderhaeghen, P. The ephrins and Eph receptors in neural development. Annu. Rev. Neurosci. 21, 309–345 (1998).

    CAS  PubMed  Google Scholar 

  10. McLaughlin, T., Hindges, R. & O'Leary, D. D. Regulation of axial patterning of the retina and its topographic mapping in the brain. Curr. Opin. Neurobiol. 13, 57–69 (2003).

    CAS  PubMed  Google Scholar 

  11. Schulte, D., Furukawa, T., Peters, M. A., Kozak, C. A. & Cepko, C. L. Misexpression of the Emx-related homeobox genes cVax and mVax2 ventralizes the retina and perturbs the retinotectal map. Neuron 24, 541–553 (1999).

    CAS  PubMed  Google Scholar 

  12. Mui, S. H., Hindges, R., O'Leary, D. D., Lemke, G. & Bertuzzi, S. The homeodomain protein Vax2 patterns the dorsoventral and nasotemporal axes of the eye. Development 129, 797–804 (2002).

    CAS  PubMed  Google Scholar 

  13. Barbieri, A. M. et al. Vax2 inactivation in mouse determines alteration of the eye dorsal-ventral axis, misrouting of the optic fibres and eye coloboma. Development 129, 805–813 (2002).

    CAS  PubMed  Google Scholar 

  14. Koshiba-Takeuchi, K. et al. Tbx5 and the retinotectum projection. Science 287, 134–137 (2000).

    CAS  PubMed  Google Scholar 

  15. Wagner, E., McCaffery, P. & Drager, U. C. Retinoic acid in the formation of the dorsoventral retina and its central projections. Dev. Biol. 222, 460–470 (2000).

    CAS  PubMed  Google Scholar 

  16. Zhao, S., Chen, Q., Hung, F. C. & Overbeek, P. A. BMP signaling is required for development of the ciliary body. Development 129, 4435–4217 (2002).

    CAS  PubMed  Google Scholar 

  17. Sen, J., Harpavat, S., Peters, M. A. & Cepko, C. L. Retinoic acid regulates the expression of dorsoventral topographic guidance molecules in the chick retina. Development 132, 5147–5159 (2005).

    CAS  PubMed  Google Scholar 

  18. Sakuta, H. et al. Ventroptin: a BMP-4 antagonist expressed in a double-gradient pattern in the retina. Science 293, 111–115 (2001).

    CAS  PubMed  Google Scholar 

  19. Lupo, G. et al. Dorsoventral patterning of the Xenopus eye: a collaboration of Retinoid, Hedgehog and FGF receptor signaling. Development 132, 1737–1748 (2005).

    CAS  PubMed  Google Scholar 

  20. Mann, F., Ray, S., Harris, W. & Holt, C. Topographic mapping in dorsoventral axis of the Xenopus retinotectal system depends on signaling through ephrin-B ligands. Neuron 35, 461–473 (2002).

    CAS  PubMed  Google Scholar 

  21. Yuasa, J., Hirano, S., Yamagata, M. & Noda, M. Visual projection map specified by topographic expression of transcription factors in the retina. Nature 382, 632–635 (1996).

    CAS  PubMed  Google Scholar 

  22. Takahashi, H., Shintani, T., Sakuta, H. & Noda, M. CBF1 controls the retinotectal topographical map along the anteroposterior axis through multiple mechanisms. Development 130, 5203–5215 (2003).

    CAS  PubMed  Google Scholar 

  23. Herrera, E. et al. Foxd1 is required for proper formation of the optic chiasm. Development 131, 5727–5739 (2004).

    CAS  PubMed  Google Scholar 

  24. Pratt, T., Tian, N. M., Simpson, T. I., Mason, J. O. & Price, D. J. The winged helix transcription factor Foxg1 facilitates retinal ganglion cell axon crossing of the ventral midline in the mouse. Development 131, 3773–3784 (2004).

    CAS  PubMed  Google Scholar 

  25. Garel, S., Yun, K., Grosschedl, R. & Rubenstein, J. L. The early topography of thalamocortical projections is shifted in Ebf1 and Dlx1/2 mutant mice. Development 129, 5621–5634 (2002).

    CAS  PubMed  Google Scholar 

  26. Garel, S. & Rubenstein, J. L. Intermediate targets in formation of topographic projections: inputs from the thalamocortical system. Trends Neurosci. 27, 533–539 (2004).

    CAS  PubMed  Google Scholar 

  27. Garel, S., Huffman, K. J. & Rubenstein, J. L. Molecular regionalization of the neocortex is disrupted in Fgf8 hypomorphic mutants. Development 130, 1903–1914 (2003).

    CAS  PubMed  Google Scholar 

  28. Vanderhaeghen, P. & Polleux, F. Developmental mechanisms patterning thalamocortical projections: intrinsic, extrinsic and in between. Trends Neurosci. 27, 384–391 (2004).

    CAS  PubMed  Google Scholar 

  29. Seibt, J. et al. Neurogenin2 specifies the connectivity of thalamic neurons by controlling axon responsiveness to intermediate target cues. Neuron 39, 439–452 (2003).

    CAS  PubMed  Google Scholar 

  30. Nakagawa, Y. & O'Leary, D. D. Combinatorial expression patterns of LIM-homeodomain and other regulatory genes parcellate developing thalamus. J. Neurosci. 21, 2711–2725 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Caviness, V. S. Jr & Frost, D. O. Tangential organization of thalamic projections to the neocortex in the mouse. J. Comp. Neurol. 194, 335–367 (1980).

    PubMed  Google Scholar 

  32. Crandall, J. E. & Caviness, V. S. Jr. Thalamocortical connections in newborn mice. J. Comp. Neurol. 228, 542–556 (1984).

    CAS  PubMed  Google Scholar 

  33. Hohl-Abrahao, J. C. & Creutzfeldt, O. D. Topographical mapping of the thalamocortical projections in rodents and comparison with that in primates. Exp. Brain Res. 87, 283–294 (1991).

    CAS  PubMed  Google Scholar 

  34. Dufour, A. et al. Area specificity and topography of thalamocortical projections are controlled by ephrin/Eph genes. Neuron 39, 453–465 (2003).

    CAS  PubMed  Google Scholar 

  35. Ince-Dunn, G. et al. Regulation of thalamocortical patterning and synaptic maturation by NeuroD2. Neuron 49, 683–695 (2006).

    CAS  PubMed  Google Scholar 

  36. Kashani, A. H. et al. Calcium activation of the LMO4 transcription complex and its role in the patterning of thalamocortical connections. J. Neurosci. 26, 8398–8408 (2006). Together with reference 35, these were the first two papers to show transcription-factor control of barrel-cortex connectivity.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Aizawa, H. et al. Dendrite development regulated by CREST, a calcium-regulated transcriptional activator. Science 303, 197–202 (2004).

    CAS  PubMed  Google Scholar 

  38. Senft, S. L. & Woolsey, T. A. Growth of thalamic afferents into mouse barrel cortex. Cereb. Cortex 1, 308–335 (1991).

    CAS  PubMed  Google Scholar 

  39. Woolsey, T. A. & Van der Loos, H. The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res. 17, 205–242 (1970).

    CAS  PubMed  Google Scholar 

  40. Iwasato, T. et al. NMDA receptor-dependent refinement of somatotopic maps. Neuron 19, 1201–1210 (1997).

    CAS  PubMed  Google Scholar 

  41. Iwasato, T. et al. Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex. Nature 406, 726–731 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hannan, A. J. PLC-β1, activated via mGluRs, mediates activity-dependent differentiation in cerebral cortex. Nature Neurosci. 4, 282–288 (2001).

    CAS  PubMed  Google Scholar 

  43. Koester, S. E. & O'Leary, D. D. Development of projection neurons of the mammalian cerebral cortex. Prog. Brain Res. 102, 207–215 (1994).

    CAS  PubMed  Google Scholar 

  44. O'Leary, D. D. & Koester, S. E. Development of projection neuron types, axon pathways, and patterned connections of the mammalian cortex. Neuron 10, 991–1006 (1993).

    CAS  PubMed  Google Scholar 

  45. Arlotta, P. et al. Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 45, 207–221 (2005). Transcriptional profiling of identified subpopulations of pyramidal neurons during development demonstrated that CTIP2 is specifically required for proper development of corticospinal projections.

    CAS  PubMed  Google Scholar 

  46. Chen, B., Schaevitz, L. R. & McConnell, S. K. Fezl regulates the differentiation and axon targeting of layer 5 subcortical projection neurons in cerebral cortex. Proc. Natl Acad. Sci. USA 102, 17184–17189 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen, J. G., Rasin, M. R., Kwan, K. Y. & Sestan, N. Zfp312 is required for subcortical axonal projections and dendritic morphology of deep-layer pyramidal neurons of the cerebral cortex. Proc. Natl Acad. Sci. USA 102, 17792–17797 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hirata, T. et al. Zinc finger gene fez-like functions in the formation of subplate neurons and thalamocortical axons. Dev. Dyn. 230, 546–556 (2004).

    CAS  PubMed  Google Scholar 

  49. Molyneaux, B. J., Arlotta, P., Hirata, T., Hibi, M. & Macklis, J. D. Fezl is required for the birth and specification of corticospinal motor neurons. Neuron 47, 817–831 (2005).

    CAS  PubMed  Google Scholar 

  50. Hevner, R. F. et al. Tbr1 regulates differentiation of the preplate and layer 6. Neuron 29, 353–366 (2001).

    CAS  PubMed  Google Scholar 

  51. Shirasaki, R. & Pfaff, S. L. Transcriptional codes and the control of neuronal identity. Annu. Rev. Neurosci. 25, 251–281 (2002).

    CAS  PubMed  Google Scholar 

  52. Pfaff, S. L., Mendelsohn, M., Stewart, C. L., Edlund, T., Jessell, T. M. Requirement for LIM homeobox gene Isl1 in motor neuron generation reveals a motor neuron-dependent step in interneuron differentiation. Cell 84, 309–320 (1996).

    CAS  PubMed  Google Scholar 

  53. Hollyday M. Organization of motor pools in the chick lumbar lateral motor column. J. Comp. Neurol. 194, 143–170 (1980).

    CAS  PubMed  Google Scholar 

  54. Lance-Jones, C. & Landmesser, L. Pathway selection by embryonic chick motoneurons in an experimentally altered environment. Proc. R. Soc. Lond. B Biol. Sci. 214, 19–52 (1981).

    CAS  PubMed  Google Scholar 

  55. Landmesser L. The distribution of motoneurones supplying chick hind limb muscles. J. Physiol. 284, 371–389 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Landmesser L. The relationship of intramuscular nerve branching and synaptogenesis to motoneuron survival. J. Neurobiol. 23, 1131–1139 (1992).

    CAS  PubMed  Google Scholar 

  57. Briscoe, J., Pierani, A., Jessell, T. M. & Ericson, J. A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 101, 435–445 (2000).

    CAS  PubMed  Google Scholar 

  58. Sharma, K., Leonard, A. E., Lettieri, K. & Pfaff, S. L. Genetic and epigenetic mechanisms contribute to motor neuron pathfinding. Nature 406, 515–519 (2000).

    CAS  PubMed  Google Scholar 

  59. Tsuchida, T. et al. Topographic organization of embryonic motor neurons defined by expression of LIM homeobox genes. Cell 79, 957–970 (1994).

    CAS  PubMed  Google Scholar 

  60. Dasen, J. S., Tice, B. C., Brenner-Morton, S. & Jessell, T. M. A Hox regulatory network establishes motor neuron pool identity and target-muscle connectivity. Cell 123, 477–491 (2005).

    CAS  PubMed  Google Scholar 

  61. Kania, A., Johnson, R. L. & Jessell, T. M. Coordinate roles for LIM homeobox genes in directing the dorsoventral trajectory of motor axons in the vertebrate limb. Cell 102, 161–173 (2000).

    CAS  PubMed  Google Scholar 

  62. Hobert, O., D'Alberti, T., Liu, Y. & Ruvkun, G. Control of neural development and function in a thermoregulatory network by the LIM homeobox gene lin-11. J. Neurosci. 18, 2084–2096 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Thor, S., Andersson, S. G., Tomlinson, A. & Thomas, J. B. A LIM-homeodomain combinatorial code for motor-neuron pathway selection. Nature 397, 76–80 (1999).

    CAS  PubMed  Google Scholar 

  64. Iwamasa, H. et al. Expression of Eph receptor tyrosine kinases and their ligands in chick embryonic motor neurons and hindlimb muscles. Dev. Growth Differ. 41, 685–698 (1999).

    CAS  PubMed  Google Scholar 

  65. Helmbacher, F., Schneider-Maunoury, S., Topilko, P., Tiret, L. & Charnay, P. Targeting of the EphA4 tyrosine kinase receptor affects dorsal/ventral pathfinding of limb motor axons. Development 127, 3313–3324 (2000).

    CAS  PubMed  Google Scholar 

  66. Eberhart, J. et al. Expression of EphA4, ephrin-A2 and ephrin-A5 during axon outgrowth to the hindlimb indicates potential roles in pathfinding. Dev. Neurosci. 22, 237–250 (2000).

    CAS  PubMed  Google Scholar 

  67. Eberhart, J. et al. 2004. Ephrin-A5 exerts positive or inhibitory effects on distinct subsets of EphA4-positive motor neurons. J. Neurosci. 24, 1070–1078

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kania, A., Jessell, T. M. Topographic motor projections in the limb imposed by LIM homeodomain protein regulation of ephrin-A:EphA interactions. Neuron 38, 581–596 (2003).

    CAS  PubMed  Google Scholar 

  69. Huber, A. B. et al. Distinct roles for secreted semaphorin signaling in spinal motor axon guidance. Neuron 48, 949–964 (2005).

    CAS  PubMed  Google Scholar 

  70. Shirasaki, R., Lewcock, J. W., Lettieri, K. & Pfaff, S. L. FGF as a target-derived chemoattractant for developing motor axons genetically programmed by the LIM code. Neuron 50, 841–853 (2006).

    CAS  PubMed  Google Scholar 

  71. Arber, S., Ladle, D. R., Lin, J. H., Frank, E. & Jessell, T. M. ETS gene Er81 controls the formation of functional connections between group Ia sensory afferents and motor neurons. Cell 101, 485–498 (2000).

    CAS  PubMed  Google Scholar 

  72. Lin, J. H. et al. Functionally related motor neuron pool and muscle sensory afferent subtypes defined by coordinate ETS gene expression. Cell 95, 393–407 (1998).

    CAS  PubMed  Google Scholar 

  73. Livet, J. et al. ETS gene Pea3 controls the central position and terminal arborization of specific motor neuron pools. Neuron 35, 877–892 (2002).

    CAS  PubMed  Google Scholar 

  74. Haase, G. et al. GDNF acts through PEA3 to regulate cell body positioning and muscle innervation of specific motor neuron pools. Neuron 35, 893–905 (2002).

    CAS  PubMed  Google Scholar 

  75. Patel, T. D. et al. Peripheral NT3 signaling is required for ETS protein expression and central patterning of proprioceptive sensory afferents. Neuron 38, 403–416 (2003).

    CAS  PubMed  Google Scholar 

  76. Vrieseling, E. & Arber, S. Target-induced transcriptional control of dendritic patterning and connectivity in motor neurons by ETS gene Pea3. Cell 127, 1439–1452 (2006).

    CAS  PubMed  Google Scholar 

  77. Polleux, F., Morrow, T. & Ghosh, A. Semaphorin 3A is a chemoattractant for developing cortical dendrites. Nature 404, 567–573 (2000).

    CAS  PubMed  Google Scholar 

  78. McKinsey, T. A., Zhang, C. L. & Olson, E. N. MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem. Sci. 27, 40–47 (2002).

    CAS  PubMed  Google Scholar 

  79. Flavell, S. W. et al. Activity-dependent regulation of MEF2 transcription factors suppresses excitatory synapse number. Science 311, 1008–1012 (2006). Uncovers the molecular mechanisms by which MEF2A/D regulates the numbers of excitatory synapses in cortical neurons.

    CAS  PubMed  Google Scholar 

  80. Mao, Z., Bonni, A., Xia, F., Nadal-Vicens, M. & Greenberg, M. E. Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science 286, 785–790 (1999).

    CAS  PubMed  Google Scholar 

  81. Shalizi, A. et al. A calcium-regulated MEF2 sumoylation switch controls postsynaptic differentiation. Science 311, 1012–1017 (2006).

    CAS  PubMed  Google Scholar 

  82. Salama-Cohen, P., Arevalo, M. A., Grantyn, R. & Rodriguez-Tebar, A. Notch and NGF/p75NTR control dendrite morphology and the balance of excitatory/inhibitory synaptic input to hippocampal neurones through Neurogenin 3. J. Neurochem. 97, 1269–1278 (2006).

    CAS  PubMed  Google Scholar 

  83. Redmond, L., Kashani, A. & Ghosh, A. Calcium regulation of dendritic growth via Cam kinase IV and CREB-mediated transcription. Neuron 34, 999–1010 (2002).

    CAS  PubMed  Google Scholar 

  84. Marie, H., Morishita, W., Yu, X., Calakos, N. & Malenka, R. C. Generation of silent synapses by acute in vivo expression of CaMKIV and CREB. Neuron 45, 741–752 (2005).

    CAS  PubMed  Google Scholar 

  85. Crair, M. C. & Malenka, R. C. A critical period for long-term potentiation at thalamocortical synapses. Nature 375, 325–328 (1995).

    CAS  PubMed  Google Scholar 

  86. Feldman, D. E., Nicoll, R. A., Malenka, R. C. & Isaac, J. T. Long-term depression at thalamocortical synapses in developing rat somatosensory cortex. Neuron 21, 347–357 (1998).

    CAS  PubMed  Google Scholar 

  87. Isaac, J. T., Crair, M. C., Nicoll, R. A. & Malenka, R. C. Silent synapses during development of thalamocortical inputs. Neuron 18, 269–280 (1997).

    CAS  PubMed  Google Scholar 

  88. Gray, P. A. et al. Mouse brain organization revealed through direct genome scale transcription factor expression analysis. Science 306, 2255–2257 (2004).

    CAS  PubMed  Google Scholar 

  89. Magdaleno S, BGEM: an in situ hybridization database of gene expression in the embryonic and adult mouse nervous system. PLoS Biol. 4, e86 (2006).

    PubMed  PubMed Central  Google Scholar 

  90. Lein E. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).

    CAS  PubMed  Google Scholar 

  91. Sugino, K. et al. Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nature Neurosci. 9, 99–107 (2006).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirvan Ghosh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Allen Brain Atlas

Brain gene expression map (BGEM)

GenePaint

Glossary

Zinc-finger transcription factor

A protein motif consisting of two antiparallel β-strands and an α-helix forming a binding pocket for a zinc ion that is crucial for the stability of this domain type.

LIM homeodomain transcription factor

A subclass of homeodomain transcription factors consisting of a zinc-binding motif that mediates protein–protein interaction.

Winged-helix transcription factor

Also called forkhead (or FOX). A class of transcription factors characterized by a 100-amino-acid, monomeric DNA-binding domain that folds into a variant of the helix-turn-helix motif and is made up of three α-helices and two characteristic large loops, or 'wings'.

Retinal waves

Waves of spontaneous neural activity generated partly by the bursting of retinal ganglion cells (RGC) and propagating throughout the retina. This correlated, spontaneous activity is conveyed to the lateral geniculate nucleus (LGN) and the visual cortex and is necessary for the segregation of eye-specific layers within the LGN, and the refinement of retinotopy.

Inter-areal topography

The topography of projection of axons originating from a thalamic nucleus to a specific set of cortical areas.

Intra-areal topography

The topography of projection of axons from one thalamic nucleus inside a given cortical area.

Basic helix-loop-helix

(bHLH). Approximately 15 charged residues (basic domain) conferring specificity of DNA binding as well as a helix-loop-helix motif mostly involved in dimerization.

Barrel cortex

The part of the rodent somatosensory cortex that receives sensory input from contralateral whisker follicles. The barrel cortex has been a useful model system to study cortical connections because of the ease with which anatomical representations of thalamocortical axon terminals can be visualized.

Transcriptional co-activator

A protein factor which on recruitment to a specific promoter activates gene transcription. Co-activators do not directly bind to DNA but are associated with transcription-factor complexes.

Fluorescence-activated cell sorting

(FACS). A technique that can rapidly separate cells in a suspension on the basis of their size and their fluorescence.

Transcription profiling

Genome-wide analysis of mRNA transcript expression in groups of cells using DNA microarray hybridization technology.

Small hairpin RNA

A sequence of RNA that makes a tight hairpin turn and can be used to silence gene expression in mammalian cells.

Hox transcription factors

A subgroup of homeobox genes that are found in a special gene cluster, the Hox cluster (also called Hox complex). There are four classes (A to D) of Hox genes that function in patterning the body axis, including the CNS.

Dermomyotome

A transitory epithelial sheet of cells formed during somite maturation. The dermomyotome is the source of most of the mesodermal tissues in the body, giving rise to cell types as diverse as muscle, connective tissue, endothelium and cartilage.

Plexus

A network of intersecting nerves.

Silent synapses

Excitatory glutamatergic synapses that contain NMDA (N-methyl-D-aspartate)-type but no AMPA (α-amino-3-hydroxy-5-methyl-4-isoazolepropionic acid)-type glutamate receptors and as a result do not respond to stimulation at resting membrane potentials.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polleux, F., Ince-Dunn, G. & Ghosh, A. Transcriptional regulation of vertebrate axon guidance and synapse formation. Nat Rev Neurosci 8, 331–340 (2007). https://doi.org/10.1038/nrn2118

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2118

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing