Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Laminating the hippocampus

Key Points

  • A characteristic feature of the hippocampus is its lamination of neuronal cell bodies and afferent fibre projections. This review summarizes recent studies on the molecular determinants that govern the formation of hippocampal cell and fibre layers.

  • Initial experiments using sequential slice co-cultures ruled out temporal factors in the layer-specific termination of afferent projections to the dentate gyrus.

  • Afferent fibres from the entorhinal cortex are guided to the dentate gyrus by axons of pioneer neurons (Cajal–Retzius cells). By contrast, commissural/associational fibres to the dentate gyrus do not require pioneer neurons. They are guided to the inner molecular layer by positional cues on proximal segments of granule cell dendrites.

  • The layer-specific termination of entorhinal axons in the outer molecular layer of the dentate gyrus is controlled by the extracellular matrix molecule hyaluronan. The lamination of granule cells is under the control of the extracellular matrix protein reelin.

  • In the marginal zone of the dentate gyrus, reelin is a positional signal for the extension and orientation of radial glial fibres. A regular radial glial scaffold is necessary for the directed migration of granule cells. Reelin also acts as a stop signal for migrating granule cells, preventing them from invading the molecular layer.

  • A laminated dentate gyrus is required for the proper function of the hippocampus. Temporal lobe epilepsy is associated with a loss of granule cell lamination (granule cell dispersion) and decreased reelin expression. Decreased reelin expression associated with granule cell dispersion in epilepsy suggests that reelin controls granule cell lamination not only during development, but throughout postnatal life.

Abstract

Lamination of neurons and fibre projections is a fundamental organizational principle of the mammalian cerebral cortex. A laminated organization is likely to be essential for cortical function, as studies in mutant mice have revealed causal relationships between lamination defects and functional deficits. Unveiling the determinants of the laminated cortical architecture will contribute to our understanding of how cortical functions have evolved in phylogenetic and ontogenetic development. Recently, the hippocampus, with its clearly segregated cell and fibre layers, has become a major subject of studies on cortical lamination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The laminated structure of the hippocampus.
Figure 2: Different signals control the laminated termination of entorhinal and commissural/associational fibres to the dentate gyrus.
Figure 3: Rescue of granule cell lamination in the reeler dentate gyrus.

Similar content being viewed by others

References

  1. Caviness, V. S. Jr & Rakic, P. Mechanisms of cortical development: a view from mutations in mice. Annu. Rev. Neurosci. 1, 297–326 (1978).

    PubMed  Google Scholar 

  2. Altman, J. & Das, G. D. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J. Comp. Neurol. 124, 319–335 (1965).

    CAS  Google Scholar 

  3. Altman, J. & Das, G. D. Autoradiographic and histological studies of postnatal neurogenesis. I. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in neonate rats, with special reference to postnatal neurogenesis in some brain regions. J. Comp. Neurol. 126, 337–390 (1966).

    CAS  PubMed  Google Scholar 

  4. Altman, J. Autoradiographic and histological studies of postnatal neurogenesis. II. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in infant rats, with special reference to postnatal neurogenesis in some brain regions. J. Comp. Neurol. 128, 431–474 (1966).

    Google Scholar 

  5. Bayer, S. A. & Altman, J. Radiation-induced interference with postnatal hippocampal cytogenesis in rats and its long-term effects in the acquisition of neurons and glia. J. Comp. Neurol. 163, 1–20 (1975).

    Google Scholar 

  6. Bayer, S. A. Development of the hippocampal region in the rat. I. Neurogenesis examined with 3H-thymidine autoradiography. J. Comp. Neurol. 190, 87–114 (1980).

    CAS  PubMed  Google Scholar 

  7. Skutella, T. & Nitsch, R. New molecules for hippocampal development. Trends Neurosci. 24, 107–113 (2001).

    CAS  PubMed  Google Scholar 

  8. Gottlieb, D. I. & Cowan, W. M. Evidence for a temporal factor in the occupation of available synaptic sites during the development of the dentate gyrus. Brain Res. 41, 452–456 (1972).

    CAS  PubMed  Google Scholar 

  9. Bayer, S. A. & Altman, J. Directions in neurogenetic gradients and patterns of anatomical connections in the telencephalon. Prog. Neurobiol. 29, 57–106 (1987).

    CAS  Google Scholar 

  10. Zhou, C. F., Li, Y., Morris, R. J. & Raisman, G. Accurate reconstruction of three complementary laminar afferents to the adult hippocampus by embryonic neural grafts. Neurosci. Res. 13 (Suppl.), S43–S53 (1990).

    CAS  Google Scholar 

  11. Field, P. M., Seeley, P. J., Frotscher, M. & Raisman, G. Selective innervation of embryonic hippocampal transplants by adult host dentate granule cell axons. Neuroscience 41, 713–727 (1991).

    CAS  PubMed  Google Scholar 

  12. Li, D., Field, P. M., Strega, U., Li, Y. & Raisman, G. Entorhinal axons project to dentate gyrus in organotypic slice co-culture. Neuroscience 52, 799–813 (1993).

    CAS  PubMed  Google Scholar 

  13. Li, D., Field, M. & Raisman, G. Connectional specification of regenerating entorhinal projection neuron classes cannot be overridden by altered target availability in postnatal organotypic slice co-culture. Exp. Neurol. 142, 151–160 (1996).

    CAS  PubMed  Google Scholar 

  14. Frotscher, M. & Heimrich, B. Formation of layer-specific fiber projections to the hippocampus in vitro. Proc. Natl Acad. Sci. USA 90, 10400–10403 (1993).

    CAS  PubMed  Google Scholar 

  15. Frotscher, M. & Heimrich, B. Lamina-specific synaptic connections of hippocampal neurons in vitro. J. Neurobiol. 26, 350–359 (1995).

    CAS  PubMed  Google Scholar 

  16. Zhao, S., Förster, E., Chai, X. & Frotscher, M. Different signals control laminar specificity of commissural and entorhinal fibers to the dentate gyrus. J. Neurosci. 23, 7351–7357 (2003). By using co-cultures of wild-type and mutant hippocampus this paper shows that components of the ECM control the lamination of entorhinal fibres to the dentate gyrus. By contrast, positional cues on the target cells guide commissural/associational fibres.

    CAS  PubMed  Google Scholar 

  17. McConnell, S. K., Ghosh, A. & Shatz, C. J. Subplate neurons pioneer the first axon pathway from the cerebral cortex. Science 245, 978–982 (1989).

    CAS  PubMed  Google Scholar 

  18. Soriano, E., Del Rio, J. A., Martinez, A. & Super, H. Organization of the embryonic and early postnatal murine hippocampus. I. Immunocytochemical characterization of neuronal populations in the subplate and marginal zone. J. Comp. Neurol. 342, 571–595 (1994).

    CAS  PubMed  Google Scholar 

  19. Super, H. & Soriano, E. The organization of the embryonic and early postnatal murine hippocampus. II. Development of entorhinal, commissural and septal connections studied with the lipophilic tracer DiI. J. Comp. Neurol. 344, 101–120 (1994).

    CAS  PubMed  Google Scholar 

  20. Del Rio, J. A. et al. A role for Cajal–Retzius cells and reelin in the development of hippocampal connections. Nature 385, 70–74 (1997). Cajal–Retzius cells are early targets of entorhinal fibres to the hippocampus. Their selective elimination results in misrouting of the entorhino-hippocampal projection.

    CAS  PubMed  Google Scholar 

  21. Ceranik, K. et al. Hippocampal Cajal–Retzius cells project to the entorhinal cortex: retrograde tracing and intracellular labelling studies. Eur. J. Neurosci. 11, 4278–4290 (1999).

    CAS  PubMed  Google Scholar 

  22. Super, H., Martinez, A., del Rio, J. A. & Soriano, E. Involvement of distinct pioneer neurons in the formation of layer-specific connections in the hippocampus. J. Neurosci. 18, 4616–4626 (1998).

    CAS  PubMed  Google Scholar 

  23. Pleasure, S. J. et al. Cell migration from the ganglionic eminences is required for the development of hippocampal GABAergic interneurons. Neuron 26, 727–740 (2000). The laminated termination of entorhinal fibres and commissural/associational fibres to the hippocampus is preserved in the absence of GABAergic interneurons, precluding a role of GABAergic cells as guide posts.

    Google Scholar 

  24. Drakew, A., Frotscher, M. & Heimrich, B. Blockade of neuronal activity alters spine maturation of dentate granule cells but not their dendritic arborization. Neuroscience 94, 767–774 (1999).

    CAS  PubMed  Google Scholar 

  25. Frotscher, M., Drakew, A. & Heimrich, B. Role of afferent innervation and neuronal activity in dendritic development and spine maturation of fascia dentata granule cells. Cereb. Cortex 10, 946–951 (2000).

    CAS  PubMed  Google Scholar 

  26. Nitsch, R. & Frotscher, M. Maintenance of peripheral dendrites of GABAergic neurons requires specific input. Brain Res. 554, 304–307 (1991).

    CAS  PubMed  Google Scholar 

  27. Deller, T. et al. The hippocampus of the reeler mutant mouse: fiber segregation in area CA1 depends on the position of the postsynaptic target cells. Exp. Neurol. 156, 254–267 (1999).

    CAS  PubMed  Google Scholar 

  28. Deller, T., Drakew, A. & Frotscher, M. Different primary target cells are important for fiber lamination in the fascia dentata: a lesson from reeler mutant mice. Exp. Neurol. 156, 239–253 (1999).

    CAS  PubMed  Google Scholar 

  29. Stanfield, B. B. & Cowan, W. M. The morphology of the hippocampus and dentate gyrus in normal and reeler mice. J. Comp. Neurol. 185, 393–422 (1979).

    CAS  PubMed  Google Scholar 

  30. Trommsdorff, M. et al. Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97, 689–701 (1999). Firmly established a role for VLDLR and APOER2 as receptors for the ECM protein reelin.

    CAS  PubMed  Google Scholar 

  31. Drakew, A. et al. Dentate granule cells in reeler mutants and VLDLR and ApoER2 knockout mice. Exp. Neurol. 176, 12–24 (2002).

    CAS  PubMed  Google Scholar 

  32. Gebhardt, C. et al. Abnormal positioning of granule cells alters afferent fiber distribution in the mouse fascia dentata: morphologic evidence from reeler, apolipoprotein E receptor 2-, and very low density lipoprotein receptor knockout mice. J. Comp. Neurol. 445, 278–292 (2002).

    PubMed  Google Scholar 

  33. Barbera, A. J., Marchase, R. B. & Roth, S. Adhesive recognition and retinotectal specificity. Proc. Natl Acad. Sci. USA 70, 2482–2486 (1973).

    CAS  PubMed  Google Scholar 

  34. Gottlieb, D. I., Rock, K. & Glaser, L. A gradient of adhesive specificity in developing avian retina. Proc. Natl Acad. Sci. USA 73, 410–414 (1976).

    CAS  PubMed  Google Scholar 

  35. Emerling, D. E. & Lander, A. D. Inhibitors and promotors of thalamic neuron adhesion and outgrowth in embryonic neocortex: functional association with chondroitin sulfate. Neuron 17, 1089–1100 (1996).

    CAS  PubMed  Google Scholar 

  36. Förster, E. et al. Lamina-specific cell adhesion on living slices of hippocampus. Development 125, 3399–3410 (1998).

    PubMed  Google Scholar 

  37. Förster, E., Zhao, S. & Frotscher, M. Hyaluronan-associated adhesive cues control fiber segregation in the hippocampus. Development 128, 3029–3039 (2001).

    PubMed  Google Scholar 

  38. Grove, E. A., Tole, S., Limon, J., Yip, L. & Ragsdale, C. W. The hem of the embryonic cerebral cortex is defined by the expression of multiple Wnt genes and is compromised in Gli3-deficient mice. Development 125, 2315–2325 (1998).

    CAS  PubMed  Google Scholar 

  39. Rickmann, M., Amaral, D. G. & Cowan, M. Organization of radial glia cells during the development of the rat dentate gyrus. J. Comp. Neurol. 264, 449–479 (1987).

    CAS  PubMed  Google Scholar 

  40. Altman, J. & Bayer, S. A. Mosaic organization of the hippocampal neuroepithelium and the multiple germinal sources of dentate granule cells. J. Comp. Neurol. 301, 325–342 (1990).

    CAS  PubMed  Google Scholar 

  41. Altman, J. & Bayer, S. A. Migration and distribution of two populations of hippocampal granule cell precursors during the perinatal and postnatal periods. J. Comp. Neurol. 301, 365–381 (1990).

    CAS  PubMed  Google Scholar 

  42. Pleasure, S. J., Collins, A. E. & Lowenstein, D. H. Unique expression patterns of cell fate molecules delineate sequential stages of dentate gyrus development. J. Neurosci. 20, 6095–6105 (2000).

    CAS  PubMed  Google Scholar 

  43. Bagri, A. et al. The chemokine SDF1 regulates migration of dentate granule cells. Development 129, 4249–4260 (2002). Characterizes the route of migration of dentate granule cells using in utero retroviral injections. Moreover, the chemokine SDF1 and its receptor CXCR4 were found to regulate granule cell migration.

    CAS  PubMed  Google Scholar 

  44. Nadarajah, B. & Parnavelas, J. G. Modes of neuronal migration in the developing cerebral cortex. Nature Rev. Neurosci. 3, 423–432 (2002). Describes three modes of neuronal migration: somal translocation in early generated neurons, glia-guided radial migration used by pyramidal cells, and tangential migration of interneurons.

    CAS  Google Scholar 

  45. Malatesta, P., Hartfuss, E. & Götz, M. Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127, 5253–5263 (2000).

    CAS  Google Scholar 

  46. Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S. & Kriegstein, A. R. Neurons derived from radial units in neocortex. Nature 409, 714–720 (2001).

    CAS  PubMed  Google Scholar 

  47. Noctor, S. C. et al. Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J. Neurosci. 22, 3161–3173 (2002).

    CAS  PubMed  Google Scholar 

  48. Miyata, T., Kawaguchi, A., Okano, H. & Ogawa, M. Assymetric inheritance of radial glial fibers by cortical neurons. Neuron 31, 727–741 (2001).

    CAS  PubMed  Google Scholar 

  49. Tissir, F. & Goffinet, A. M. Reelin and brain development. Nature Rev. Neurosci. 4, 496–505 (2003). An excellent review of what is known about the function of reelin and the signalling cascades involved.

    CAS  Google Scholar 

  50. Zhao, S., Chai, X., Förster, E. & Frotscher, M. Reelin is a positional signal for the lamination of dentate granule cells. Development 131, 5117–5125 (2004). When a slice of reeler hippocampus was co-cultured to a wild-type hippocampal slice the lamination of dentate granule cells was rescued in the reeler slice, showing that reelin needs to be in a specific location to exert its effect on granule cell lamination.

    CAS  PubMed  Google Scholar 

  51. Howell, B. W., Hawkes, R., Soriano, P. & Cooper, J. A. Neuronal positioning in the developing brain is regulated by mouse disabled-1. Nature 389, 733–737 (1997).

    CAS  PubMed  Google Scholar 

  52. Förster, E. et al. Reelin, Disabled 1, and β1-integrins are required for the formation of the radial glial scaffold in the hippocampus. Proc. Natl Acad. Sci. USA 99, 13178–13183 (2002).

    Google Scholar 

  53. Frotscher, M., Haas, C. & Förster, E. Reelin controls granule cell migration in the dentate gyrus by acting on the radial glial scaffold. Cereb. Cortex 13, 634–640 (2003).

    PubMed  Google Scholar 

  54. Weiss, K. -H. et al. Malformation of the radial glial scaffold in the dentate gyrus of reeler mice, scrambler mice and ApoER2/VLDLR deficient mice. J. Comp. Neurol. 460, 56–65 (2003).

    CAS  PubMed  Google Scholar 

  55. Schwab, M. H. et al. Neuronal basic helix–loop–helix proteins (NEX and BETA2/Neuro D) regulate terminal granule cell differentiation in the hippocampus. J. Neurosci. 20, 3714–3724 (2000).

    CAS  PubMed  Google Scholar 

  56. Galceran, J., Miyashita-Lin, E. M., Dvaney, E., Rubenstein, J. L. & Grosschedl, R. Hippocampus development and generation of dentate granule cells is regulated by LEF1. Development 127, 469–482 (2000).

    CAS  PubMed  Google Scholar 

  57. Liu, M. et al. Loss of BETA2/NeuroD leads to malformation of the dentate gyrus and epilepsy. Proc. Natl Acad. Sci. USA 97, 865–870 (2000).

    CAS  PubMed  Google Scholar 

  58. Del Turco, D. et al. Laminar organization of the mouse dentate gyrus: insights from BETA2/Neuro D mutant mice. J. Comp. Neurol. 477, 81–95 (2004).

    PubMed  Google Scholar 

  59. Zhou, C. J., Zhao, C. & Pleasure, S. J. Wnt signaling mutants have decreased dentate granule cell production and radial glial scaffolding abnormalities. J. Neurosci. 24, 121–126 (2004).

    CAS  PubMed  Google Scholar 

  60. Lee, S. M., Tole, S., Grove, E. & McMahon, A. P. A local Wnt-3a signal is required for development of the mammalian hippocampus. Development 127, 457–467 (2000).

    CAS  PubMed  Google Scholar 

  61. Pellegrini, M., Mansouri, A., Simeone, A., Boncinelli, E. & Gruss, P. Dentate gyrus formation requires Emx2. Development 122, 3893–3898 (1996).

    CAS  PubMed  Google Scholar 

  62. Yoshida, M. Emx1 and Emx2 functions in development of dorsal telencephalon. Development 124, 101–111 (1997).

    CAS  PubMed  Google Scholar 

  63. Porter, F. D. et al. Lhx2, a LIM homeobox gene, is required for eye, forebrain, and definitive erythrocyte development. Development 124, 2935–2944 (1997).

    CAS  Google Scholar 

  64. Zhao, Y. et al. Control of hippocampal morphogenesis and neuronal differentiation by the LIM homeobox gene Lhx5. Science 284, 1155–1158 (1999).

    CAS  Google Scholar 

  65. Mallamaci, A., Muzio, L., Chan, C. H., Parnavelas, J. & Boncinelli, E. Area identity shifts in the early cerebral cortex of Emx2−/− mutant mice. Nature Neurosci. 3, 679–686 (2000).

    CAS  PubMed  Google Scholar 

  66. Tole, S., Goudreau, G., Assimacopoulos, S. & Grove, E. A. Emx2 is required for growth of the hippocampus but not for hippocampal field specification. J. Neurosci. 20, 2618–2625 (2000).

    CAS  PubMed  Google Scholar 

  67. Anderson, S. A., Eisenstat, D. D., Shi, L. & Rubenstein, J. L. Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278, 474–476 (1997).

    CAS  Google Scholar 

  68. Marin, O., Anderson, S. A. & Rubenstein, J. L. R. Origin and molecular specification of striatal interneurons. J. Neurosci. 20, 6063–6076 (2000).

    CAS  PubMed  Google Scholar 

  69. Marin-Padilla, M. Cajal–Retzius cells and the development of the neocortex. Trends Neurosci. 21, 64–71 (1998).

    CAS  PubMed  Google Scholar 

  70. Hevner, R. F., Neogi, T., Englund, C., Daza, R. A. & Fink, A. Cajal–Retzius cells in the mouse: transcription factors, neurotransmitters, and birthdates suggest a pallial origin. Brain Res. Dev. Brain Res. 141, 39–53 (2003).

    CAS  PubMed  Google Scholar 

  71. Shinozaki, K. et al. Absence of Cajal–Retzius cells and subplate neurons associated with defects of tangential cell migration from ganglionic eminence in Emx1/2 double mutant cerebral cortex. Development 129, 3479–3492 (2002).

    CAS  PubMed  Google Scholar 

  72. Lavdas, A. A., Grigoriou, M., Pachnis, V. & Parnavelas, J. G. The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J. Neurosci. 19, 7881–7888 (1999).

    CAS  PubMed  Google Scholar 

  73. Meyer, G. & Wahle, P. The paleocortical ventricle is the origin of reelin-expressing neurons in the marginal zone of the fetal human cortex. Eur. J. Neurosci. 11, 3937–3944 (1999).

    CAS  PubMed  Google Scholar 

  74. Zecevic, N. & Rakic, P. Development of layer I neurons in the primate cerebral cortex. J. Neurosci. 21, 5607–5619 (2001).

    CAS  PubMed  Google Scholar 

  75. Meyer, G., Cabrera Socorro, A., Perez Garcia, C. G., Abraham, H. & Caput, D. Expression of p73 and reelin in the developing human cortex. J. Neurosci. 22, 4973–4986 (2002).

    CAS  PubMed  Google Scholar 

  76. Bielle, F. et al. Multiple origins of Cajal–Retzius cells at the borders of the developing pallium. Nature Neurosci. 8, 1002–1012 (2005).

    CAS  PubMed  Google Scholar 

  77. Hartmann, D., Sievers, J., Pehlemann, F. W. & Berry, M. Destruction of meningeal cells over the medial cerebral hemisphere of newborn hamsters prevents the formation of the infrapyramidal blade of the dentate gyrus. J. Comp. Neurol. 320, 33–61 (1992).

    CAS  PubMed  Google Scholar 

  78. Hartmann, D., Frotscher, M. & Sievers, J. Development of granule cells, and afferent and efferent connections of the dentate gyrus after experimentally induced reorganization of the supra- and infrapyramidal blades. Acta Anat. 150, 25–37 (1994).

    CAS  PubMed  Google Scholar 

  79. Tamamaki, N. Development of afferent fiber lamination in the infrapyramidal blade of the rat dentate gyrus. J. Comp. Neurol. 411, 257–266 (1999).

    CAS  PubMed  Google Scholar 

  80. Graus-Porta, D. et al. β1-class integrins regulate the development of laminae and folia in the cerebral and cerebellar cortex. Neuron 31, 367–379 (2001).

    CAS  PubMed  Google Scholar 

  81. Halfter, W., Dong, S., Yip, Y. P., Willem, M. & Mayer, U. A critical function of the pial basement membrane in cortical histogenesis. J. Neurosci. 22, 6029–6040 (2002).

    CAS  PubMed  Google Scholar 

  82. Hartmann, D., DeStooper, B. & Saftig, P. Presenilin-1 deficiency leads to loss of Cajal–Retzius neurons and cortical dysplasia similar to human type II lissencephaly. Curr. Biol. 9, 719–727 (1999).

    CAS  PubMed  Google Scholar 

  83. Niewmierzycka, A., Mills, J., St-Arnaud, R., Dedhar, S. & Reichardt, L. F. Integrin-linked kinase deletion from mouse cortex results in cortical lamination defects resembling cobblestone lissencephaly. J. Neurosci. 25, 7022–7031 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Meyer, G. et al. Developmental roles of p73 in Cajal–Retzius cells and cortical patterning. J. Neurosci. 24, 9878–9887 (2004).

    CAS  PubMed  Google Scholar 

  85. Stumm, R. K. et al. CXCR4 regulates interneuron migration in the developing neocortex. J. Neurosci. 23, 5123–5130 (2003).

    CAS  PubMed  Google Scholar 

  86. Tissir, F., Wang, C. E. & Goffinet, A. M. Expression of the chemokine receptor CXCR4 mRNA during mouse brain development. Brain Res. Dev. Brain Res. 22, 63–71 (2004).

    Google Scholar 

  87. Verhage, M. et al. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 287, 864–869 (2000). Despite the lack of transmitter release in Munc18-1-deficient mice, cortical layers, fibre projections and synaptic structures develop normally.

    CAS  Google Scholar 

  88. Ben-Ari, Y. Excitatory actions of GABA during development: the nature of the nurture. Nature Rev. Neurosci. 3, 728–738 (2002).

    CAS  Google Scholar 

  89. Houser, C. R. Granule cell dispersion in the dentate gyrus of humans with temporal lobe epilepsy. Brain Res. 535, 195–204 (1990).

    CAS  PubMed  Google Scholar 

  90. Houser, C. R. Neuronal loss and synaptic reorganization in temporal lobe epilepsy. Adv. Neurol. 79, 743–761 (1999).

    CAS  PubMed  Google Scholar 

  91. Haas, C. A. et al. Role for reelin in the development of granule cell dispersion in temporal lobe epilepsy. J. Neurosci. 22, 5797–5802 (2002). The extent of granule cell dispersion in patients with epilepsy was found to correlate with a loss of reelin-synthesizing Cajal–Retzius cells, indicating that reelin could have a role in the maintenance of granule cell lamination in the adult human brain.

    CAS  PubMed  Google Scholar 

  92. Tauck, D. L. & Nadler, J. V. Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid-treated rats. J. Neurosci. 5, 1016–1022 (1985).

    CAS  PubMed  Google Scholar 

  93. Nadler, J. V. The recurrent mossy fiber pathway of the epileptic brain. Neurochem. Res. 28, 1649–1658 (2003).

    CAS  PubMed  Google Scholar 

  94. Chae, T. et al. Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures, and adult lethality. Neuron 18, 29–42 (1997).

    CAS  PubMed  Google Scholar 

  95. Wenzel, H. J., Robbins, C. A., Tsai, L. H. & Schwartzkroin, P. A. Abnormal morphological and functional organization of the hippocampus in a p35 mutant model of cortical displasia associated with spontaneous seizures. J. Neurosci. 21, 983–998 (2001).

    CAS  PubMed  Google Scholar 

  96. Walter, J., Kern-Veits, B., Huf, J., Stolze, B. & Bonhoeffer, F. Recognition of position-specific properties of tectal cell membranes by retinal axons in vitro. Development 101, 685–696 (1987).

    CAS  PubMed  Google Scholar 

  97. Tozuka, Y., Fukuda, S., Namba, T., Seki, T. & Hisatsune, T. GABAergic excitation promotes neuronal differentiation in adult hippocampal progenitor cells. Neuron 47, 803–815 (2005).

    CAS  PubMed  Google Scholar 

  98. Zhao, C., Teng, E. M., Summers, R. G. Jr, Ming, G. -L. & Gage, F. H. Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J. Neurosci. 26, 3–11 (2006). The authors used retrovirus-mediated gene transduction to monitor the dendritic and axonal differentiation of adult-born dentate granule cells.

    CAS  PubMed  Google Scholar 

  99. Blackstad, T. W. Commissural connections of the hippocampal region of the rat, with special reference to their mode of termination. J. Comp. Neurol. 105, 417–537 (1956).

    CAS  PubMed  Google Scholar 

  100. Blackstad, T. W. On the termination of some afferents to the hippocampus and fascia dentata: an experimental study in the rat. Acta Anat. (Basel) 35, 202–214 (1958).

    CAS  Google Scholar 

  101. Deller, T., Martinez, A., Nitsch, R. & Frotscher, M. A novel entorhinal projection to the rat dentate gyrus: direct innervation of proximal dendrites and cell bodies of granule cells and GABAergic interneurons. J. Neurosci. 16, 3322–3333 (1996).

    CAS  PubMed  Google Scholar 

  102. Ribak, C. E. & Seress, L. Five types of basket cell in the hippocampal dentate gyrus: a combined Golgi and electron microscopic study. J. Neurocytol. 12, 577–597 (1983).

    CAS  PubMed  Google Scholar 

  103. Soriano, E. & Frotscher, M. A GABAergic axo-axonic cell in the fascia dentata controls the main excitatory hippocampal pathway. Brain Res. 503, 170–174 (1989).

    CAS  PubMed  Google Scholar 

  104. Han, Z. S., Buhl, E. H., Lorinczi, Z. & Somogyi, P. A high degree of spatial selectivity in the axonal and dendritic domains of physiologically identified local-circuit neurons in the dentate gyrus of the rat hippocampus. Eur. J. Neurosci. 5, 395–410 (1993).

    CAS  PubMed  Google Scholar 

  105. Soriano, E. & Frotscher, M. GABAergic innervation of the rat fascia dentata: a novel type of interneuron in the granule cell layer with extensive axonal arborization in the molecular layer. J. Comp. Neurol. 334, 385–396 (1993).

    CAS  PubMed  Google Scholar 

  106. Freund, T. F. & Buzsáki, G. Interneurons of the hippocampus. Hippocampus 6, 347–470 (1996).

    CAS  PubMed  Google Scholar 

  107. Beffert, U. et al. Reelin and cyclin-dependent kinase 5-dependent signals cooperate in regulating neuronal migration and synaptic transmission. J. Neurosci. 24, 1897–1906 (2004).

    CAS  PubMed  Google Scholar 

  108. Ohshima, T. et al. Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc. Natl Acad. Sci. USA 93, 11173–11178 (1996).

    CAS  PubMed  Google Scholar 

  109. Ko, J. et al. p35 and p39 are essential for cyclin-dependent kinase 5 function during neurodevelopment. J. Neurosci. 395, 510–522 (2001).

    Google Scholar 

  110. Pilz, D. T. et al. LIS1 and XLIS (DCX) mutations cause most classical lissencephaly, but different patterns of malformation. Hum. Mol. Genet. 7, 2029–2037 (1998).

    CAS  PubMed  Google Scholar 

  111. Francis, F. et al. Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron 23, 247–256 (1999).

    CAS  PubMed  Google Scholar 

  112. Corbo, J. C. et al. Doublecortin is required in mice for lamination of the hippocampus but not the neocortex. J. Neurosci. 22, 7548–7557 (2002).

    CAS  PubMed  Google Scholar 

  113. Bai, J. et al. RNAi reveals doublecortin is required for radial migration in rat neocortex. Nature Neurosci. 6, 1277–1283 (2003).

    CAS  PubMed  Google Scholar 

  114. Fleck, M. W. et al. Hippocampal abnormalities and enhanced excitability in a murine model of human lissencephaly. J. Neurosci. 20, 2439–2450 (2000).

    CAS  PubMed  Google Scholar 

  115. Gale, L. M. & McColl, S. R. Chemokines: extracellular messengers for all occasions? Bioessays 21, 17–28 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Dieni for her helpful comments on the manuscript. Our work was supported by the Deutsche Forschungsgemeinschaft (German Research Foundation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Frotscher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Institute of Anatomy and Cell Biology

Glossary

Principal neurons

A term that describes glutamatergic hippocampal pyramidal neurons and dentate granule cells that outnumber GABAergic interneurons.

Organotypic slice culture

A culture system that preserves the environment of the cultured cells, as tissue sections and not dissociated cells are cultivated.

Cajal–Retzius cell

A type of early-generated neuron that populates the marginal zone of the cerebral cortex. Originally described by Gustaf Retzius and Santiago Ramn y Cajal, these cells were recently found to synthesize and secrete the glycoprotein reelin. Reelin is important for the proper migration of cortical neurons.

Radial glia

A type of glial cell that gives rise to long, radially oriented processes. These processes provide a scaffold for radially migrating neurons. Recent studies have shown that radial glial cells are neuronal precursors.

Suprapyramidal blade

Describes the part of the granule cell layer that is close to hippocampal area CA1, and is located above the pyramidal cell layer in CA3.

Infrapyramidal blade

Describes the part of the granule cell layer that is furthestfrom CA1, and is located underneath the pyramidal cell layer in CA3.

Ganglionic eminence

A ventral portion of the telencephalic vesicle. It is a source of GABAergic interneurons destined for the neocortex and hippocampus, and is the anlage of the future striatum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Förster, E., Zhao, S. & Frotscher, M. Laminating the hippocampus. Nat Rev Neurosci 7, 259–268 (2006). https://doi.org/10.1038/nrn1882

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1882

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing