Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Reading vascular changes in brain imaging: is dendritic calcium the key?

Abstract

A key goal in functional neuroimaging is to use signals that are related to local changes in metabolism and blood flow to track the neuronal correlates of mental activity. Recent findings indicate that the dendritic processing of excitatory synaptic inputs correlates more closely than the generation of spikes with brain imaging signals. The correlation is often nonlinear and context-sensitive, and cannot be generalized for every condition or brain region. The vascular signals are mainly produced by increases in intracellular calcium in neurons and possibly astrocytes, which activate important enzymes that produce vasodilators to generate increments in flow and the positive blood oxygen level dependent signal. Our understanding of the cellular mechanisms of functional imaging signals places constraints on the interpretation of the data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neurophysiological basis of activity-dependent increases in cerebral blood flow illustrated by examples obtained from the cerebellar cortex.
Figure 2: Synaptic inhibition modulates activity of vasodilator-producing enzymes in dendrites by attenuating calcium increases.
Figure 3: Simplistic model of the proposed effect of synaptic inhibition on activity-dependent blood flow and blood oxygen level dependent contrast signals.
Figure 4: Modulation of blood flow, oxygen consumption and blood oxygen level dependent contrast signal under mild excitation.

Similar content being viewed by others

References

  1. Heeger, D. J., Huk, A. C., Geisler, W. S. & Albrecht, D. G. Spikes versus BOLD: what does neuroimaging tell us about neuronal activity? Nature Neurosci. 3, 631–633 (2000).

    CAS  Google Scholar 

  2. Rees, G., Friston, K. & Koch, C. A direct quantitative relationship between the functional properties of human and macaque V5. Nature Neurosci. 3, 716–723 (2000).

    CAS  Google Scholar 

  3. Rose, J. E. & Mountcastle, V. B. Activity of single neurons in the tactile thalamic region of the cat in response to a transient peripheral stimulus. Bull. Johns Hopkins Hosp. 94, 238–282 (1954).

    CAS  PubMed  Google Scholar 

  4. Mountcastle, V. B. Modality and topographic properties of single neurons of cat's somatic sensory cortex. J. Neurophysiol. 20, 408–434 (1957).

    CAS  PubMed  Google Scholar 

  5. Hubel, D. H. & Wiesel, T. N. Receptive fields of single neurones in the cat's striate cortex. J. Physiol. (Lond.) 148, 574–591 (1959).

    Google Scholar 

  6. Wiesel, T. N. & Hubel, D. H. Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J. Neurophysiol. 28, 1029–1040 (1965).

    CAS  PubMed  Google Scholar 

  7. Mathiesen, C., Caesar, K., Akgoren, N. & Lauritzen, M. Modification of activity-dependent increases of cerebral blood flow by excitatory synaptic activity and spikes in rat cerebellar cortex. J. Physiol. (Lond.) 512, 555–566 (1998).

    CAS  Google Scholar 

  8. Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001).

    CAS  Google Scholar 

  9. Kayser, C., Kim, M., Ugurbil, K., Kim, D. S. & Konig, P. A comparison of hemodynamic and neural responses in cat visual cortex using complex stimuli. Cereb. Cortex 14, 881–891 (2004).

    PubMed  Google Scholar 

  10. Thomsen, K., Offenhauser, N. & Lauritzen, M. Principle neuron spiking: neither necessary nor sufficient for cerebral blood flow at rest or during activation in rat cerebellum. J. Physiol. (Lond.) 560, 181–189 (2004).

    CAS  Google Scholar 

  11. Shulman, R. G., Hyder, F. & Rothman, D. L. Cerebral energetics and the glycogen shunt: neurochemical basis of functional imaging. Proc. Natl Acad. Sci. USA 98, 6417–6422 (2001).

    CAS  PubMed  Google Scholar 

  12. Bonvento, G., Sibson, N. & Pellerin, L. Does glutamate image your thoughts? Trends Neurosci. 25, 359–364 (2002).

    CAS  PubMed  Google Scholar 

  13. Attwell, D. & Iadecola, C. The neural basis of functional brain imaging signals. Trends Neurosci. 25, 621–625 (2002).

    CAS  PubMed  Google Scholar 

  14. Busija, D. W. & Leffler, C. W. Dilator effects of amino acid neurotransmitters on piglet pial arterioles. Am. J. Physiol. 257, H1200–H1203 (1989).

    CAS  PubMed  Google Scholar 

  15. Faraci, F. M. & Breese, K. R. Nitric oxide mediates vasodilatation in response to activation of N-methyl-D-aspartate receptors in brain. Circ. Res. 72, 476–480 (1993).

    CAS  PubMed  Google Scholar 

  16. Faraci, F. M., Breese, K. R. & Heistad, D. D. Responses of cerebral arterioles to kainate. Stroke 25, 2080–2083 (1994).

    CAS  PubMed  Google Scholar 

  17. Nakai, M. & Maeda, M. Systemic and regional haemodynamic responses elicited by microinjection of N-methyl-D-aspartate into the lateral periaqueductal gray matter in anaesthetized rats. Neuroscience 58, 777–783 (1994).

    CAS  PubMed  Google Scholar 

  18. Alkayed, N. J. et al. Role of P-450 arachidonic acid epoxygenase in the response of cerebral blood flow to glutamate in rats. Stroke 28, 1066–1072 (1997).

    CAS  PubMed  Google Scholar 

  19. Forman, S. D. et al. Simultaneous glutamate and perfusion fMRI responses to regional brain stimulation. J. Cereb. Blood Flow Metab. 18, 1064–1070 (1998).

    CAS  PubMed  Google Scholar 

  20. Harder, D. R., Alkayed, N. J., Lange, A. R., Gebremedhin, D. & Roman, R. J. Functional hyperemia in the brain: hypothesis for astrocyte-derived vasodilator metabolites. Stroke 29, 229–234 (1998).

    CAS  PubMed  Google Scholar 

  21. Yang, G. & Iadecola, C. Activation of cerebellar climbing fibers increases cerebellar blood flow: role of glutamate receptors, nitric oxide, and cGMP. Stroke 29, 499–507 (1998).

    CAS  PubMed  Google Scholar 

  22. Nielsen, A. & Lauritzen, M. Coupling and uncoupling of activity-dependent increases of neuronal activity and blood flow in rat somatosensory cortex. J. Physiol. (Lond.) 533, 773–785 (2001).

    CAS  Google Scholar 

  23. Kida, I., Hyder, F. & Behar, K. L. Inhibition of voltage-dependent sodium channels suppresses the functional magnetic resonance imaging response to forepaw somatosensory activation in the rodent. J. Cereb. Blood Flow Metab. 21, 585–591 (2001).

    CAS  PubMed  Google Scholar 

  24. Sokoloff, L. Relationships among local functional activity, energy metabolism, and blood flow in the central nervous system. Fed. Proc. 40, 2311–2316 (1981).

    CAS  PubMed  Google Scholar 

  25. Lou, H. C., Edvinsson, L. & MacKenzie, E. T. The concept of coupling blood flow to brain function: revision required? Ann. Neurol. 22, 289–297 (1987).

    CAS  PubMed  Google Scholar 

  26. Lassen, N. A. in Brain Work and Mental Activity (eds Lassen, N. A., Ingvar, D. H., Raichle, M. E. & Friberg, L.) 68–79 (Munksgaard, Copenhagen, 1991).

    Google Scholar 

  27. Kuschinsky, W. & Wahl, M. Local chemical and neurogenic regulation of cerebral vascular resistance. Physiol. Rev. 58, 656–689 (1978).

    CAS  PubMed  Google Scholar 

  28. Paulson, O. B. & Newman, E. A. Does the release of potassium from astrocyte endfeet regulate cerebral blood flow? Science 237, 896–898 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Astrup, J. et al. in Cerebral Vascular Smooth Muscle and its Control (eds Elliott, K. & O'Connor, M.) 313–337 (Elsevier, New York, 1978).

    Google Scholar 

  30. Iadecola, C. & Kraig, R. P. Focal elevations in neocortical interstitial K+ produced by stimulation of the fastigial nucleus in rat. Brain Res. 563, 273–277 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Caesar, K., Akgoren, N., Mathiesen, C. & Lauritzen, M. Modification of activity-dependent increases in cerebellar blood flow by extracellular potassium in anaesthetized rats. J. Physiol. (Lond.) 520, 281–292 (1999).

    CAS  Google Scholar 

  32. Niwa, K., Lindauer, U., Villringer, A. & Dirnagl, U. Blockade of nitric oxide synthesis in rats strongly attenuates the CBF response to extracellular acidosis. J. Cereb. Blood Flow Metab. 13, 535–539 (1993).

    CAS  PubMed  Google Scholar 

  33. Dreier, J. P. et al. Nitric oxide modulates the CBF response to increased extracellular potassium. J. Cereb. Blood Flow Metab. 15, 914–919 (1995).

    CAS  PubMed  Google Scholar 

  34. Faraci, F. M. & Brian, J. E. Nitric oxide and the cerebral circulation. Stroke 25, 692–703 (1994).

    CAS  PubMed  Google Scholar 

  35. Akgoren, N., Fabricius, M. & Lauritzen, M. Importance of nitric oxide for local increases of blood flow in rat cerebellar cortex during electrical stimulation. Proc. Natl Acad. Sci. USA 91, 5903–5907 (1994).

    CAS  PubMed  Google Scholar 

  36. Irikura, K., Maynard, K. I. & Moskowitz, M. A. Importance of nitric oxide synthase inhibition to the attenuated vascular responses induced by topical L-nitroarginine during vibrissal stimulation. J. Cereb. Blood Flow Metab. 14, 45–48 (1994).

    CAS  PubMed  Google Scholar 

  37. Li, J. & Iadecola, C. Nitric oxide and adenosine mediate vasodilation during functional activation in cerebellar cortex. Neuropharmacology 33, 1453–1461 (1994).

    CAS  PubMed  Google Scholar 

  38. Kaufmann, W. E., Worley, P. F., Pegg, J., Bremer, M. & Isakson, P. COX-2, a synaptically induced enzyme, is expressed by excitatory neurons at postsynaptic sites in rat cerebral cortex. Proc. Natl Acad. Sci. USA 93, 2317–2321 (1996).

    CAS  PubMed  Google Scholar 

  39. Lindauer, U., Megow, D., Matsuda, H. & Dirnagl, U. Nitric oxide: a modulator, but not a mediator, of neurovascular coupling in rat somatosensory cortex. Am. J. Physiol. 277, H799–H811 (1999).

    CAS  PubMed  Google Scholar 

  40. Cholet, N., Bonvento, G. & Seylaz, J. Effect of neuronal NO synthase inhibition on the cerebral vasodilatory response to somatosensory stimulation. Brain Res. 708, 197–200 (1996).

    CAS  PubMed  Google Scholar 

  41. Niwa, K., Araki, E., Morham, S. G., Ross, M. E. & Iadecola, C. Cyclooxygenase-2 contributes to functional hyperemia in whisker-barrel cortex. J. Neurosci. 20, 763–770 (2000).

    CAS  PubMed  Google Scholar 

  42. Peng, X. et al. Suppression of cortical functional hyperemia to vibrissal stimulation in the rat by epoxygenase inhibitors. Am. J. Physiol. Heart Circ. Physiol. 283, H2029–H2037 (2002).

    CAS  PubMed  Google Scholar 

  43. Iadecola, C. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nature Rev. Neurosci. 5, 347–360 (2004).

    CAS  Google Scholar 

  44. Zonta, M. et al. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nature Neurosci. 6, 43–50 (2003).

    CAS  PubMed  Google Scholar 

  45. Anderson, C. M. & Nedergaard, M. Astrocyte-mediated control of cerebral microcirculation. Trends Neurosci. 26, 340–344 (2003).

    CAS  PubMed  Google Scholar 

  46. Akgoren, N., Mathiesen, C., Rubin, I. & Lauritzen, M. Laminar analysis of activity-dependent increases of CBF in rat cerebellar cortex: dependence on synaptic strength. Am. J. Physiol. 273, H1166–H1176 (1997).

    CAS  PubMed  Google Scholar 

  47. Dirnagl, U., Niwa, K., Lindauer, U. & Villringer, A. Coupling of cerebral blood flow to neuronal activation: role of adenosine and nitric oxide. Am. J. Physiol. 267, H296–H301 (1994).

    CAS  PubMed  Google Scholar 

  48. Fabricius, M. & Lauritzen, M. Examination of the role of nitric oxide for the hypercapnic rise of cerebral blood flow in rats. Am. J. Physiol. 266, H1457–H1464 (1994).

    CAS  PubMed  Google Scholar 

  49. Berne, R. M., Knabb, R. M., Ely, S. W. & Rubio, R. Adenosine in the local regulation of blood flow: a brief overview. Fed. Proc. 42, 3136–3142 (1983).

    CAS  PubMed  Google Scholar 

  50. Phillis, J. W. Adenosine in the control of the cerebral circulation. Cerebrovasc. Brain Metab. Rev. 1, 26–54 (1989).

    CAS  PubMed  Google Scholar 

  51. Northington, F. J., Matherne, G. P., Coleman, S. D. & Berne, R. M. Sciatic nerve stimulation does not increase endogenous adenosine production in sensory-motor cortex. J. Cereb. Blood Flow Metab. 12, 835–843 (1992).

    CAS  PubMed  Google Scholar 

  52. Cauli, B. et al. Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways. J. Neurosci. 24, 8940–8949 (2004).

    CAS  PubMed  Google Scholar 

  53. Creutzfeldt, O. in Brain Work: The Coupling of Function, Metabolism and Blood Flow in the Brain (eds Ingvar, D. H. & Lassen, N. A.) 21–47 (Munksgaard, Copenhagen, 1975).

    Google Scholar 

  54. Scannell, J. W. & Young, M. P. Neuronal population activity and functional imaging. Proc. R. Soc. Lond. B 266, 875–881 (1999).

    CAS  Google Scholar 

  55. Friston, K. Functional integration and inference in the brain. Prog. Neurobiol. 68, 113–143 (2002).

    PubMed  Google Scholar 

  56. Horwitz, B. The elusive concept of brain connectivity. Neuroimage 19, 466–470 (2003).

    PubMed  Google Scholar 

  57. Lee, L., Harrison, L. M. & Mechelli, A. A report of the functional connectivity workshop, Dusseldorf 2002. Neuroimage 19, 457–465 (2003).

    PubMed  Google Scholar 

  58. Smith, A. J. et al. Cerebral energetics and spiking frequency: the neurophysiological basis of fMRI. Proc. Natl Acad. Sci. USA 99, 10765–10770 (2002).

    CAS  PubMed  Google Scholar 

  59. Hyder, F., Rothman, D. L. & Shulman, R. G. Total neuroenergetics support localized brain activity: implications for the interpretation of fMRI. Proc. Natl Acad. Sci. USA 99, 10771–10776 (2002).

    CAS  PubMed  Google Scholar 

  60. Tsubokawa, T. et al. Changes in local cerebral blood flow and neuronal activity during sensory stimulation in normal and sympathectomized cats. Brain Res. 190, 51–64 (1980).

    CAS  PubMed  Google Scholar 

  61. Lauritzen, M. Relationship of spikes, synaptic activity, and local changes of cerebral blood flow. J. Cereb. Blood Flow Metab. 21, 1367–1383 (2001).

    CAS  PubMed  Google Scholar 

  62. Caesar, K., Gold, L. & Lauritzen, M. Context sensitivity of activity-dependent increases in cerebral blood flow. Proc. Natl Acad. Sci. USA 100, 4239 (2003).

    CAS  PubMed  Google Scholar 

  63. Enager, P., Gold, L. & Lauritzen, M. Impaired neurovascular coupling by transhemispheric diaschisis in rat cerebral cortex. J. Cereb. Blood Flow Metab. 24, 713–719 (2004).

    PubMed  Google Scholar 

  64. Yang, G., Huard, J. M., Beitz, A. J., Ross, M. E. & Iadecola, C. Stellate neurons mediate functional hyperemia in the cerebellar molecular layer. J. Neurosci. 20, 6968–6973 (2000).

    CAS  PubMed  Google Scholar 

  65. Gold, L. & Lauritzen, M. Neuronal deactivation explains decreased cerebellar blood flow in response to focal cerebral ischemia or suppressed neocortical function. Proc. Natl Acad. Sci. USA 99, 7699–7704 (2002).

    CAS  PubMed  Google Scholar 

  66. Narayan, S. M., Esfahani, P., Blood, A. J., Sikkens, L. & Toga, A. W. Functional increases in cerebral blood volume over somatosensory cortex. J. Cereb. Blood Flow Metab. 15, 754–765 (1995).

    CAS  PubMed  Google Scholar 

  67. Disbrow, E. A., Slutsky, D. A., Roberts, T. P. & Krubitzer, L. A. Functional MRI at 1.5 tesla: a comparison of the blood oxygenation level-dependent signal and electrophysiology. Proc. Natl Acad. Sci. USA 97, 9718–9723 (2000).

    CAS  PubMed  Google Scholar 

  68. Harrison, R. V., Harel, N., Panesar, J. & Mount, R. J. Blood capillary distribution correlates with hemodynamic-based functional imaging in cerebral cortex. Cereb. Cortex 12, 225–233 (2002).

    PubMed  Google Scholar 

  69. Llinas, R. R. The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242, 1654–1664 (1988).

    CAS  PubMed  Google Scholar 

  70. Midtgaard, J. Processing of information from different sources: spatial synaptic integration in the dendrites of vertebrate CNS neurons. Trends Neurosci. 17, 166–173 (1994).

    CAS  PubMed  Google Scholar 

  71. Hausser, M., Spruston, N. & Stuart, G. J. Diversity and dynamics of dendritic signaling. Science 290, 739–744 (2000).

    CAS  Google Scholar 

  72. Migliore, M. & Shepherd, G. M. Emerging rules for the distributions of active dendritic conductances. Nature Rev. Neurosci. 3, 362–370 (2002).

    CAS  Google Scholar 

  73. Nicholson, C. Theoretical analysis of field potentials in anisotropic ensembles of neuronal elements. IEEE Trans. Biomed. Eng. 20, 278–288 (1973).

    CAS  PubMed  Google Scholar 

  74. Bullock, T. H. Signals and signs in the nervous system: the dynamic anatomy of electrical activity is probably information-rich. Proc. Natl Acad. Sci. USA 94, 1–6 (1997).

    CAS  PubMed  Google Scholar 

  75. Mathiesen, C., Caesar, K. & Lauritzen, M. Temporal coupling between neuronal activity and blood flow in rat cerebellar cortex as indicated by field potential analysis. J. Physiol. (Lond.) 523, 235–246 (2000).

    CAS  Google Scholar 

  76. Ngai, A. C., Jolley, M. A., D'Ambrosio, R., Meno, J. R. & Winn, H. R. Frequency-dependent changes in cerebral blood flow and evoked potentials during somatosensory stimulation in the rat. Brain Res. 837, 221–228 (1999).

    CAS  PubMed  Google Scholar 

  77. Leniger-Follert, E. & Hossmann, K. A. Simultaneous measurements of microflow and evoked potentials in the somatomotor cortex of the cat brain during specific sensory activation. Pflugers Arch. 380, 85–89 (1979).

    CAS  PubMed  Google Scholar 

  78. Ureshi, M., Matsuura, T. & Kanno, I. Stimulus frequency dependence of the linear relationship between local cerebral blood flow and field potential evoked by activation of rat somatosensory cortex. Neurosci. Res. 48, 147–153 (2004).

    PubMed  Google Scholar 

  79. Brinker, G. et al. Simultaneous recording of evoked potentials and T2*-weighted MR images during somatosensory stimulation of rat. Magn. Reson. Med. 41, 469–473 (1999).

    CAS  PubMed  Google Scholar 

  80. Arthurs, O. J. & Boniface, S. J. What aspect of the fMRI BOLD signal best reflects the underlying electrophysiology in human somatosensory cortex? Clin. Neurophysiol. 114, 1203–1209 (2003).

    CAS  PubMed  Google Scholar 

  81. Ances, B. M., Zarahn, E., Greenberg, J. H. & Detre, J. A. Coupling of neural activation to blood flow in the somatosensory cortex of rats is time-intensity separable, but not linear. J. Cereb. Blood Flow Metab. 20, 921–930 (2000).

    CAS  PubMed  Google Scholar 

  82. Jones, M., Hewson-Stoate, N., Martindale, J., Redgrave, P. & Mayhew, J. Nonlinear coupling of neural activity and CBF in rodent barrel cortex. Neuroimage 22, 956–965 (2004).

    PubMed  Google Scholar 

  83. Devor, A. et al. Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex. Neuron 39, 353–359 (2003).

    CAS  PubMed  Google Scholar 

  84. Sheth, S. A. et al. Linear and nonlinear relationships between neuronal activity, oxygen metabolism, and hemodynamic responses. Neuron 42, 347–355 (2004).

    CAS  PubMed  Google Scholar 

  85. Nemoto, M. et al. Functional signal- and paradigm-dependent linear relationships between synaptic activity and hemodynamic responses in rat somatosensory cortex. J. Neurosci. 24, 3850–3861 (2004).

    CAS  PubMed  Google Scholar 

  86. Saad, Z. S., Ropella, K. M., DeYoe, E. A. & Bandettini, P. A. The spatial extent of the BOLD response. Neuroimage 19, 132–144 (2003).

    PubMed  Google Scholar 

  87. Blood, A. J. & Toga, A. W. Optical intrinsic signal imaging responses are modulated in rodent somatosensory cortex during simultaneous whisker and forelimb stimulation. J. Cereb. Blood Flow Metab. 18, 968–977 (1998).

    CAS  PubMed  Google Scholar 

  88. Cannestra, A. F., Pouratian, N., Shomer, M. H. & Toga, A. W. Refractory periods observed by intrinsic signal and fluorescent dye imaging. J. Neurophysiol. 80, 1522–1532 (1998).

    CAS  PubMed  Google Scholar 

  89. Ogawa, S. et al. An approach to probe some neural systems interaction by functional MRI at neural time scale down to milliseconds. Proc. Natl Acad. Sci. USA 97, 11026–11031 (2000).

    CAS  PubMed  Google Scholar 

  90. Ances, B. M., Greenberg, J. H. & Detre, J. A. Effects of variations in interstimulus interval on activation-flow coupling response and somatosensory evoked potentials with forepaw stimulation in the rat. J. Cereb. Blood Flow Metab. 20, 290–297 (2000).

    CAS  PubMed  Google Scholar 

  91. Midtgaard, J., Lasser-Ross, N. & Ross, W. N. Spatial distribution of Ca2+ influx in turtle Purkinje cell dendrites in vitro: role of a transient outward current. J. Neurophysiol. 70, 2455–2469 (1993).

    CAS  PubMed  Google Scholar 

  92. Denk, W., Sugimori, M. & Llinas, R. Two types of calcium response limited to single spines in cerebellar Purkinje cells. Proc. Natl Acad. Sci. USA 92, 8279–8282 (1995).

    CAS  PubMed  Google Scholar 

  93. Segal, M. Fast imaging of [Ca]i reveals presence of voltage-gated calcium channels in dendritic spines of cultured hippocampal neurons. J. Neurophysiol. 74, 484–488 (1995).

    CAS  PubMed  Google Scholar 

  94. Tsay, D. & Yuste, R. On the electrical function of dendritic spines. Trends Neurosci. 27, 77–83 (2004).

    CAS  PubMed  Google Scholar 

  95. Hounsgaard, J. & Midtgaard, J. Synaptic control of excitability in turtle cerebellar Purkinje cells. J. Physiol. (Lond.) 409, 157–170 (1989).

    CAS  Google Scholar 

  96. Zhang, E. T. et al. Prepro-vasoactive intestinal polypeptide-derived peptide sequences in cerebral blood vessels of rats: on the functional anatomy of metabolic autoregulation. J. Cereb. Blood Flow Metab. 11, 932–938 (1991).

    CAS  PubMed  Google Scholar 

  97. Southam, E., Morris, R. & Garthwaite, J. Sources and targets of nitric oxide in rat cerebellum. Neurosci. Lett. 137, 241–244 (1992).

    CAS  PubMed  Google Scholar 

  98. Porter, J. T. et al. Properties of bipolar VIPergic interneurons and their excitation by pyramidal neurons in the rat neocortex. Eur. J. Neurosci. 10, 3617–3628 (1998).

    CAS  PubMed  Google Scholar 

  99. Vaucher, E., Tong, X. K., Cholet, N., Lantin, S. & Hamel, E. GABA neurons provide a rich input to microvessels but not nitric oxide neurons in the rat cerebral cortex: a means for direct regulation of local cerebral blood flow. J. Comp. Neurol. 421, 161–171 (2000).

    CAS  PubMed  Google Scholar 

  100. Hamel, E. Cholinergic modulation of the cortical microvascular bed. Prog. Brain Res. 145, 171–178 (2004).

    CAS  PubMed  Google Scholar 

  101. Caesar, K., Thomsen, K. & Lauritzen, M. Dissociation of spikes, synaptic activity, and activity-dependent increments in rat cerebellar blood flow by tonic synaptic inhibition. Proc. Natl Acad. Sci. USA 100, 16000–16005 (2003).

    CAS  PubMed  Google Scholar 

  102. Callaway, J. C., Lasser-Ross, N. & Ross, W. N. IPSPs strongly inhibit climbing fiber-activated [Ca2+]i increases in the dendrites of cerebellar Purkinje neurons. J. Neurosci. 15, 2777–2787 (1995).

    CAS  PubMed  Google Scholar 

  103. Tsubokawa, H. & Ross, W. N. IPSPs modulate spike backpropagation and associated [Ca2+]i changes in the dendrites of hippocampal CA1 pyramidal neurons. J. Neurophysiol. 76, 2896–2906 (1996).

    CAS  PubMed  Google Scholar 

  104. Heinemann, U. & Pumain, R. Extracellular calcium activity changes in cat sensorimotor cortex induced by iontophoretic application of aminoacids. Exp. Brain Res. 40, 247–250 (1980).

    CAS  PubMed  Google Scholar 

  105. Sancesario, G. et al. Nitrergic neurons make synapses on dual-input dendritic spines of neurons in the cerebral cortex and the striatum of the rat: implication for a postsynaptic action of nitric oxide. Neuroscience 99, 627–642 (2000).

    CAS  PubMed  Google Scholar 

  106. Burette, A., Zabel, U., Weinberg, R. J., Schmidt, H. H. & Valtschanoff, J. G. Synaptic localization of nitric oxide synthase and soluble guanylyl cyclase in the hippocampus. J. Neurosci. 22, 8961–8970 (2002).

    CAS  PubMed  Google Scholar 

  107. Cholet, N. et al. Local injection of antisense oligonucleotides targeted to the glial glutamate transporter GLAST decreases the metabolic response to somatosensory activation. J. Cereb. Blood Flow Metab. 21, 404–412 (2001).

    CAS  PubMed  Google Scholar 

  108. Goldberg, J. H., Tamas, G., Aronov, D. & Yuste, R. Calcium microdomains in aspiny dendrites. Neuron 40, 807–821 (2003).

    CAS  PubMed  Google Scholar 

  109. McCormick, D. A., Connors, B. W., Lighthall, J. W. & Prince, D. A. Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J. Neurophysiol. 54, 782–806 (1985).

    CAS  PubMed  Google Scholar 

  110. Akgoren, N., Dalgaard, P. & Lauritzen, M. Cerebral blood flow increases evoked by electrical stimulation of rat cerebellar cortex: relation to excitatory synaptic activity and nitric oxide synthesis. Brain Res. 710, 204–214 (1996).

    CAS  PubMed  Google Scholar 

  111. Allison, J. D., Meador, K. J., Loring, D. W., Figueroa, R. E. & Wright, J. C. Functional MRI cerebral activation and deactivation during finger movement. Neurology 54, 135–142 (2000).

    CAS  PubMed  Google Scholar 

  112. Wenzel, R. et al. Deactivation of human visual cortex during involuntary ocular oscillations. A PET activation study. Brain 119, 101–110 (1996).

    PubMed  Google Scholar 

  113. Wenzel, R. et al. Saccadic suppression induces focal hypooxygenation in the occipital cortex. J. Cereb. Blood Flow Metab. 20, 1103–1110 (2000).

    CAS  PubMed  Google Scholar 

  114. Salek-Haddadi, A. et al. Functional magnetic resonance imaging of human absence seizures. Ann. Neurol. 53, 663–667 (2003).

    PubMed  Google Scholar 

  115. Nehlig, A., Vergnes, M., Marescaux, C. & Boyet, S. Mapping of cerebral energy metabolism in rats with genetic generalized nonconvulsive epilepsy. J. Neural Transm. 35 (suppl.), 141–153 (1992).

    CAS  Google Scholar 

  116. Nehlig, A. et al. Absence seizures induce a decrease in cerebral blood flow: human and animal data. J. Cereb. Blood Flow Metab. 16, 147–155 (1996).

    CAS  PubMed  Google Scholar 

  117. Timofeev, I., Grenier, F. & Steriade, M. Contribution of intrinsic neuronal factors in the generation of cortically driven electrographic seizures. J. Neurophysiol. 92, 1133–1143 (2004).

    CAS  PubMed  Google Scholar 

  118. Blankenburg, F. et al. Imperceptible stimuli and sensory processing impediment. Science 299, 1864 (2003).

    CAS  PubMed  Google Scholar 

  119. Harel, N., Lee, S. P., Nagaoka, T., Kim, D. S. & Kim, S. G. Origin of negative blood oxygenation level-dependent fMRI signals. J. Cereb. Blood Flow Metab. 22, 908–917 (2002).

    PubMed  Google Scholar 

  120. Shmuel, A. et al. Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain. Neuron 36, 1195–1210 (2002).

    CAS  PubMed  Google Scholar 

  121. Raichle, M. E. et al. A default mode of brain function. Proc. Natl Acad. Sci. USA 98, 676–682 (2001).

    CAS  Google Scholar 

  122. Bandettini, P. A. & Ungerleider, L. G. From neuron to BOLD: new connections. Nature Neurosci. 4, 864–866 (2001).

    CAS  Google Scholar 

  123. Clarke, D. D. & Sokoloff, L. in Basic Neurochemistry: Molecular, Cellular and Medical Aspects 5th edn (eds Siegel, G. J., Agranoff, B. W., Albers, R. W. & Molinoff, P. B.) 645–680 (Raven, New York, 1994).

    Google Scholar 

  124. Gunter, T. E., Yule, D. I., Gunter, K. K., Eliseev, R. A. & Salter, J. D. Calcium and mitochondria. FEBS Lett. 567, 96–102 (2004).

    CAS  PubMed  Google Scholar 

  125. Ogawa, S., Lee, T. M., Kay, A. R. & Tank, D. W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl Acad. Sci. USA 87, 9868–9872 (1990).

    CAS  PubMed  Google Scholar 

  126. Kwong, K. K. et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Natl Acad. Sci. USA 89, 5675–5679 (1992).

    CAS  PubMed  Google Scholar 

  127. Bandettini, P. A., Wong, E. C., Hinks, R. S., Tikofsky, R. S. & Hyde, J. S. Time course EPI of human brain function during task activation. Magn. Reson. Med. 25, 390–397 (1992).

    CAS  PubMed  Google Scholar 

  128. Ogawa, S. et al. Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys. J. 64, 803–812 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Ugurbil, K. et al. Magnetic resonance studies of brain function and neurochemistry. Annu. Rev. Biomed. Eng. 2, 633–660 (2000).

    CAS  PubMed  Google Scholar 

  130. Wong-Riley, M. T. Cytochrome oxidase: an endogenous metabolic marker for neuronal activity. Trends Neurosci. 12, 94–101 (1989).

    CAS  PubMed  Google Scholar 

  131. Sokoloff, L. Energetics of functional activation in neural tissues. Neurochem. Res. 24, 321–329 (1999).

    CAS  PubMed  Google Scholar 

  132. Attwell, D. & Laughlin, S. B. An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 21, 1133–1145 (2001).

    CAS  PubMed  Google Scholar 

  133. Gjedde, A., Marrett, S. & Vafaee, M. Oxidative and nonoxidative metabolism of excited neurons and astrocytes. J. Cereb. Blood Flow Metab. 22, 1–14 (2002).

    CAS  PubMed  Google Scholar 

  134. Lennie, P. The cost of cortical computation. Curr. Biol. 13, 493–497 (2003).

    CAS  PubMed  Google Scholar 

  135. Kasischke, K. A., Vishwasrao, H. D., Fisher, P. J., Zipfel, W. R. & Webb, W. W. Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 305, 99–103 (2004).

    CAS  PubMed  Google Scholar 

  136. Fox, P. T. & Raichle, M. E. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc. Natl Acad. Sci. USA 83, 1140–1144 (1986).

    CAS  PubMed  Google Scholar 

  137. Fox, P. T., Raichle, M. E., Mintun, M. A. & Dence, C. Nonoxidative glucose consumption during focal physiologic neural activity. Science 241, 462–464 (1988).

    CAS  PubMed  Google Scholar 

  138. Malonek, D. & Grinvald, A. Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science 272, 551–554 (1996).

    CAS  PubMed  Google Scholar 

  139. Chaigneau, E., Oheim, M., Audinat, E. & Charpak, S. Two-photon imaging of capillary blood flow in olfactory bulb glomeruli. Proc. Natl Acad. Sci. USA 100, 13081–13086 (2003).

    CAS  PubMed  Google Scholar 

  140. Grubb, R. L. Jr., Raichle, M. E., Eichling, J. O. & Ter-Pogossian, M. M. The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time. Stroke 5, 630–639 (1974).

    PubMed  Google Scholar 

  141. Mandeville, J. B. et al. Evidence of a cerebrovascular postarteriole windkessel with delayed compliance. J. Cereb. Blood Flow Metab. 19, 679–689 (1999).

    CAS  PubMed  Google Scholar 

  142. Lee, S. P., Duong, T. Q., Yang, G., Iadecola, C. & Kim, S. G. Relative changes of cerebral arterial and venous blood volumes during increased cerebral blood flow: implications for BOLD fMRI. Magn. Reson. Med. 45, 791–800 (2001).

    CAS  PubMed  Google Scholar 

  143. Raichle, M. E. Functional brain imaging and human brain function. J. Neurosci. 23, 3959–3962 (2003).

    CAS  PubMed  Google Scholar 

  144. Ugurbil, K., Toth, L. & Kim, D. S. How accurate is magnetic resonance imaging of brain function? Trends Neurosci. 26, 108–114 (2003).

    CAS  PubMed  Google Scholar 

  145. Raichle, M. E. Behind the scenes of functional brain imaging: a historical and physiological perspective. Proc. Natl Acad. Sci. USA 95, 765–772 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by The Lundbeck Foundation, The Humboldt Foundation, NeuroScience PharmaBiotech, The Danish Medical Research Council, The Carlsberg Foundation, The Brødrene Hartmann Foundation and the NOVO-Nordisk Foundation. I thank Jens Midtgaard, David Attwell, Ulrich Dirnagl, Kirsten Caesar and Kirsten Thomsen for extended discussion on these issues, and for comments on the manuscript. Kirsten Caesar kindly helped me with the figures.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

COX2

NOS

FURTHER INFORMATION

Encyclopedia of Life Sciences

Brain imaging: localization of brain functions

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lauritzen, M. Reading vascular changes in brain imaging: is dendritic calcium the key?. Nat Rev Neurosci 6, 77–85 (2005). https://doi.org/10.1038/nrn1589

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1589

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing